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I Division algorithm of numbers 

Let a, b be two positive integers with a > b. There exists unique non-negative integers q and r 

such that a = qb + r, where 0 ≤ r < b. (e.g. 47 = 5×9 + 2) 

Proof: Existence 

Consider the sequence of integers: a, a – b, a – 2b, a – 3b, ⋯ , a – qb, ⋯ 

It is a decreasing sequence of integers starting from a. 

There is the least non-negative integer r = a – qb ≥ 0 > a – (q + 1)b ⋯ (*) 

∵ 0 > a – (q + 1)b = a – qb – b 

∴ b > r 

So 0 ≤ r < b and a = qb + r. 

Uniqueness 

Suppose there is another set of non-negative integers (q1,r1) so that a = q1b+r1; where 0 ≤r1<b. 

r1 = a – q1b 

0 ≤ r1 < b  0 ≤ a – q1b < b 

∵ r is the least non-negative integer such that 0 ≤ r < b 

∴ 0 ≤ r ≤ r1 < b 

If r ≠ r1, then 0 ≤ r < r1 < b  0 ≤ a – qb < a – q1b < b 

0 < qb – q1b and a < q1b + b 

q1 < q and a < (q1 + 1)b 

∴ a < (q1 + 1)b < (q + 1)b  –a > –(q1 + 1)b > –(q + 1)b 

a – a > a – (q1 + 1)b > a – (q + 1)b 

0 > a – (q1 + 1)b > a – (q + 1)b 

By (*), r = a – qb ≥ 0 > a – (q1 + 1)b > a – (q + 1)b 

– qb > – (q1 + 1)b > – (q + 1)b 

q < q1 + 1 < q + 1, but q1 + 1 cannot lie between two consecutive integers  contradiction 

∴ r = r1  q = q1 

Let a, b be two positive integers, we can use synthetic division to find the H.C.F. and L.C.M.. 

e.g. To find the H.C.F. and L.C.M. of 5451 and 782. 

23 5451  782 

3 237 2 34 

 79  17 

 prime  prime 

∴ H.C.F. = 23 

L.C.M. = 23×237×34 = 185334 =
23

7825451×
 

Note that (1) to determine whether a number n is a prime, divide n by all prime numbers ≤ n . 

(2) H.C.F. × L.C.M. = a×b 

(3) H.C.F. = Highest common factor = greatest common divisor = g.c.d. = (a, b) 

(4) L.C.M. = least common multiplier (multiple) 
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II The Euclidean algorithms 輾轉相除法 

We can use the Euclidean algorithm to find the H.C.F. of 5451 and 782. 

Step 1 5451 > 782. 

  5451 = 782×6 + 759 

Step 2 782 > 759 

  782 = 759×1 +23 

Step 3 759 > 23 

  759 = 23×33 + 0 

∴ H.C.F. is 23 . 

Exercise Find the H.C.F. of 

(a) 462, 588; [ans. 42] 

(b) 1518, 1932; [ans. 138] 

(c) 7392, 6720, 8736. [ans. 672] 

We can write in compact form as follows: 

1 782 5451 6 

 759 4692  

 23 759 33 

 HCF 759  

  0  

Theorem To find the g.c.d.(a, b) using Euclidean algorithm. 

If a = b , then (a, b) = a . 

Otherwise suppose without loss of generality, a > b. 

Consider a ÷ b, a = quotient × divisor + remainder 

a = q0b + r1,  0 ≤ r1 < b 

b = q1r1 + r2,  0 ≤ r2 < r1 

r1 = q2r2 + r3  0 ≤ r3 < r2 

⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 

rk–1 = qkrk + rk+1 0 ≤ rk+1 < rk 

Since 0 ≤ rk+1 < rk < rk–1 < ⋯ < r3 < r2 < r1 < b and b is a fixed number. 

∴ {rk} is a decreasing sequence of integers and all are non-negative. 

There is a first integer n such that rn+1 = 0 

( )
( )
( )

( )
( )

0 1 1

1 1 2 2 1

1 2 2 3 3 2

2 1 1 1

1 1 1

, 0 1

, 0 2

, 0 3

,0

,    0 1

n n n n n n

n n n n n

a q b r r b

b q r r r r

r q r r r r

r q r r r r n

r q r r r n

− − − −

− + +

= + < <


= + < <
 = + < <


 = + < <

 = + = +

⋯

⋯

⋯

⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯

⋯

⋯

 

∴ rn–1 = qn rn 
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We can prove by induction that r
n
 divides r

n–m
 for m = 1, 2, ⋯ , n – 1 . 

From equation (n + 1), r
n–1

 = q
n
 r

n
, so r

n
 divides r

n–1
 . 

From equation (n), r
n–2

 = q
n–1

 r
n–1

 + r
n
 = q

n–1
(q

n
 r

n
) + r

n
 = (q

n–1
q

n
 + 1)r

n
, so r

n
 divides r

n–2 . 

Suppose r
n
 divides r

n–k
 and r

n–k+1 , i.e. r
n–k

 = r
n
 s and r

n–k+1
 = r

n
 t, where s, t are integers. 

r
n–(k+1)

 = q
n–k

 r
n–k

 + r
n–k+1

 = q
n–k

 (r
n
 s) + r

n
 t = (q

n–k
 s + t) r

n
 , r

n
 divides r

n–(k+1)
. 

By the principle of mathematical induction, r
n
 divides r

n–m
 for m = 1, 2, ⋯ , n – 1 . 

When m = n – 1, r
n
 divides r

1
, which means equation (2): b = q

1
r

1
 + r

2
 which is divisible by r

n . 

Equation (1): a = q
0
b + r

1
, which is also divisible by r

n
 . 

∴ r
n
 is a common factor of a and b ⋯⋯ (*) 

 

Let c (> 0) be any other common factor of a and b . 

From equation (1): r
1
 = a – q

0
b  c divides r

1 . 

From equation (2): r
2
 = b – q

1
r

1
  c divides r

2
 . 

Suppose c divides r
k–2

 and c divides r
k–1

 for some positive integer k, where 2 < k ≤ n . 

From equation (k): r
k
 = r

k–2
 – q

k–1
r

k–1
  c divides r

k
 . 

By MI, c divides rm for all m, where 1 ≤ m ≤ n . 

In particular, c divides r
n
 ⋯⋯ (**) 

 

Combine (*) and (**), r
n
 is the H.C.F. of a and b . 

 

Theorem If (a, b) = r
n
 , then there exist integers s, t such that sa + tb = r

n
 

We shall prove by M.I. that there exist integers sm, tm such that s
m
a + t

m
b = r

m
 for m = 1, 2, ⋯ , n . 

Proof: From equation (n+1): r
n–1

 = q
n
 r

n
 ⋯⋯ (n+1') 

From equation (n): r
n
 = r

n–2
 – q

n–1
 r

n–1
 ⋯⋯ (n') 

From equation (n–1): r
n–1

 = r
n–3

 – q
n–2

 r
n–2

 ⋯⋯ (n–1') 

⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 

From equation (3): r
3
 = r

1
 – q

2
 r

2
 ⋯⋯ (3') 

From equation (2): r
2
 = b – q

1
 r

1
 ⋯⋯ (2') 

From equation (1): r
1
 = a – q

0
 b ⋯⋯ (1') 

Sub. (1') into (2'): r
2
 = b – q

1
(a – q

0
 b) = – q

1
a + (q

0
q

1
 + 1)b ⋯⋯ (2") 

Sub. (1') & (2") into (3'): r
3
 = a – q

0
 b – q

2
 [–q

1
a + (q

0
q

1
 + 1)b] = (1 + q

1
q

2
)a –(q

0
+q

0
q

1
q

2
+q

2
)b 

Suppose s
k–1

a + t
k–1

b = r
k–1

 and s
k
a + t

k
b = r

k
 for some positive integer k – 1 and k .  

Sub. them into equation (k+1'): r
k+1

 = r
k–1

 – q
k
 r

k
 = (s

k–1
a + t

k–1
b) – q

k
 (s

k
a + t

k
b) 

r
k+1

 = (s
k–1

 – q
k
 s

k
)a + (t

k–1
 – q

k
 t

k
)b = s

k+1
 a + t

k+1
 b 

By M.I., there exist integers s
m
, t

m
 such that s

m
a + t

m
b = r

m
 for m = 1, 2, ⋯ , n . 

In particular, there exist integers s, t such that sa + tb = r
n
 . 
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Conversely, if there exist integers s, t such that sa + tb = r, where r is the smallest positive integer, 

then r = g.c.d.(a, b). Note that s or t may be negative. 

Proof: Let M = {sa + tb: s, t ∈ ℤ} 

a > b ∈ M 

∴ M ≠ φ 

If x = sa + tb ∈ M 

–x = (–s)a + (–t)b ∈ M 

∴ M always has some positive integers. 

Let M1 = {x ∈ M: x > 0} 

Then M1 is bounded below by 0 . 

There is the smallest positive integer r ∈ M1. 

Let r = s
0
a + t

0
b 

Let d divides a and d divides b, then d divides (s
0
a + t

0
b) = r 

Hence d divides r ⋯⋯ (*) 

 

For any x = sa + tb ∈ M ⋯ (1) 

By division algorithm (x ÷ r), x = qr + r1 ⋯ (2) where 0 ≤ r
1
 < r ⋯ (3) 

x = sa + tb = q(s
0
a + t

0
b) + r1 

r1 = (s – qs
0
)a + (t – qt

0
)b 

∴ r1 ∈ M
1 

∵ By (3), 0 ≤ r
1
 < r and r is the smallest positive integer. 

∴ r
1
 = 0 

By (2), x = qr 

r divides x . 

By (1), r divides sa + tb ∈ M 

a = 1a + 0b ∈ M 

b = 0a + 1b ∈ M 

∴ r divides a and r divides b 

r is the common factor of a and b ⋯⋯ (**) 

By (*) and (**), r = g.c.d.(a, b). 

 

In particular, if sa + tb = 1, then a and b are relatively prime. (a, b) = 1 . 
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Example 1 Let d be the H.C.F. of 24543 and 17982. 

(a) Find d . 

(b) Find integers m and n such that 24543m + 17982n = d . 

(a) By Euclidean algorithm, 

24543 = 17982 + 6561 ⋯⋯ (1) 

17982 = 2×6561 + 4860 ⋯⋯ (2) 

6561 = 4860 + 1701 ⋯⋯ (3) 

4860 = 2×1701 + 1458 ⋯⋯ (4) 

1701 = 1458 + 243 ⋯⋯ (5) 

1458 = 6×243 ⋯⋯ (6) 

∴ d = 243 

(b) From (5), 243 = 1701 – 1458 ⋯⋯ (7) 

From (4), 1458 = 4860 – 2×1701 ⋯⋯ (8) 

From (3), 1701 = 6561 – 4860 ⋯ (9) 

From (2), 4860 = 17982 – 2×6561 ⋯⋯ (10) 

From (1), 6561 = 24543 – 17982 ⋯⋯ (11) 

Sub. (11) into (10): 4860 = 17982 – 2×(24543 – 17982) 

4860 = 3×17982 – 2×24543 ⋯⋯ (12) 

Sub. (11) & (12) into (9): 1701 = 24543 – 17982 – (3×17982 – 2×24543) 

1701 = 3×24543 – 4×17982 ⋯⋯ (13) 

Sub. (12) & (13) into (8): 1458 = 3×17982 – 2×24543 – 2×(3×24543 – 4×17982) 

1458 = 11×17982 – 8×24543 ⋯⋯ (14) 

Sub. (13) & (14) into (7): 243 = 3×24543 – 4×17982 – (11×17982 – 8×24543) 

243 = 11×24543 – 15×17982; m = 11, n = –15 

  



Division algorithms and Euclidean algorithms Created by Mr. Francis Hung 

c:\users\孔德偉\dropbox\data\mathsdata\pure_maths\algebra\polynomial\division_euclidean_algorithms.docx Page 6 

Method 2 

24543m + 17982n = d  101×243m + 74×243n = 243 

101m + 74n = 1 

101 = 74 + 27 ⋯⋯ (1) 

74 = 2×27 + 20 ⋯⋯ (2) 

27 = 20 + 7 ⋯⋯ (3) 

20 = 2×7 + 6 ⋯⋯ (4) 

7 = 6 + 1 ⋯⋯ (5) 

From (5), 1 = 7 – 6 ⋯⋯ (6) 

From (4), 6 = 20 – 2×7 ⋯⋯ (7) 

From (3), 7 = 27 – 20 ⋯⋯ (8) 

From (2), 20 = 74 – 2×27 ⋯⋯ (9) 

From (1), 27 = 101 – 74 ⋯ ⋯ (10) 

Sub. (10) into (9): 20 = 74 – 2×(101 – 74) 

20 = 3×74 – 2×101 ⋯⋯ (11) 

Sub. (10) & (11) into (8): 7 = 101 – 74 – (3×74 – 2×101) 

7 = 3×101 – 4×74 ⋯⋯ (12) 

Sub. (11) & (12) into (7): 6 = 3×74 – 2×101 – 2×(3×101 – 4×74) 

6 = 11×74 – 8×101 ⋯⋯ (13) 

Sub. (12) & (13) into (6): 1 = 3×101 – 4×74 – (11×74 – 8×101) 

1 = 11×101 – 15×74; m = 11, n = –15 
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Let F be a number field (e.g. rational number, real number, complex number.) 

Define F[x] = {anx
n + ⋯ + a1x + a0: ar ∈ F, r = 0, 1, 2, … , n} 

If f(x) ∈ F[x], then f(x) = anx
n + ⋯ + a1x + a0, n ∈ ℕ ∪ {0}. 

If an ≠ 0, define the degree of f(x) = n. 

If an = 0, define the degree of f(x) = –∞ 

The coefficient of xr is ar is ar, r = 0, 1, 2, ⋯ , n 

The leading coefficient = an. 

If an = 1, f(x) is called a monic polynomial. 

If ar ∈ ℤ for r = 0, 1, 2, ⋯ , n and an = 1, f(x) is called an integer monic polynomial. 

The leading term = anx
n 

Constant term = a0 

If f(x) = a0, then f(x) is called a constant polynomial. 

Let f(x), g(x) ∈ F[x]. 

g(x) is a factor of f(x) if there exist polynomial h(x) ∈ F[x] such that f(x) = g(x) h(x). 

We say that f(x) is divisible by g(x) or f(x) is a multiple of g(x). 

e.g. x2 – 2 ∈ ℚ[x] 

 x2 – 2 = ( )( )22 −+ xx  

 But ( )2+x ∉ ℚ[x] 

 ∴ ( )2+x  is not a factor of x2 – 2 over ℚ. 

 

On the other hand, for x2 – 2 ∈ ℝ[x] 

( )2+x  is a factor of x2 – 2 over ℝ. 

 

Similarly  x2 + 1 ∈ ℚ[x] but x + i ∉ ℚ[x], where i = 1−  

∴ x + i is not a factor of x2 + 1 over ℚ, nor a factor over ℝ. 

 

In factor, for x2 + 1∈ ℂ[x], x + i is a factor over ℂ. 

 

f(x) ∈ F[x] is said to be irreducible/ prime polynomial if it cannot be expressed as the product of two 

polynomials of positive degree in F[x], otherwise it is reducible. 

 

e.g. 2(x + 1) is irreducible over ℚ[x], ℝ[x] or ℂ[x]. 

 x2 – 2 is irreducible over ℚ[x] only. 

 x2 – 2 is reducible over ℝ[x] or ℂ[x]. 

 

H.C.F. (or gcd) of f(x), g(x) ∈ F[x]. 

Let d(x) be a monic polynomial in F[x]. 

d(x) = gcd(f(x), g(x)) if and only if the following are satisfied: 

(1) d(x) divides f(x) and d(x) divides g(x). 

(2) If h(x) ∈ F[x] and if h(x) divides f(x), h(x) divides g(x), then h(x) divides d(x). 

 

e.g. f(x) = 2x, g(x) = 4x(x – 1) 

 HCF = x  (not 2x) 

e.g. f(x) = x2 + 1, g(x) = x – i over ℝ. 

 There is no H.C.F. because g(x) ∉ ℝ[x]. 
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Let F be the field (either ℚ, ℝ or ℂ), f(x), g(x) ∈ F[x] and g(x) ≠ 0 

then there exist unique q(x), r(x) ∈ F[x] such that f(x) = g(x)q(x) + r(x), where deg r(x) < deg g(x). 

Proof: Existence 

If f(x) ≡ 0 or deg f(x) < deg g(x), then f(x) = 0 g(x) + f(x), done. 

Otherwise use induction on deg f(x). 

Step 1 If deg f(x) = 0 

f(x) = a0 ≠ 0 

∵ deg f(x) ≥ deg g(x) = 0 

∴ g(x) = c ≠ 0 

f(x) = a0 = 00 +







c

c

a
, done. 

Step 2 Suppose it is true for all polynomial ∈ F[x] of degree less than (but not equal to) k. 

Let f(x) = akx
k + ⋯ + a1x + a0, where ak ≠ 0 

and g(x) = bmxm + ⋯ + b1x + b0, where bm ≠ 0, k, m ∈ ℕ, k ≥ m 

Let f1(x) = f(x) – ( )xgx
b

a mk

m

k − = akx
k + ⋯ + a1x + a0 – (akx

k + other lower terms) 

 = polynomial of degree < k 

By induction assumption, f1(x) = q1(x)g(x) + r(x), deg r(x) < deg g(x). 

∴ q1(x) g(x) + r(x) = f(x) – ( )xgx
b

a mk

m

k −  

f(x) = ( ) ( ) ( )xrxgx
b

a
xq

mk

m

k +







+ −

1 = Q(x) g(x) + r(x), where Q(x) = ( ) mk

m

k x
b

a
xq

−+1 . 

By the principle of mathematical induction, the existence is true for all k ∈ ℕ. 

Uniqueness 

Suppose f(x) = q1(x)g(x) + r1(x) ≡ q2(x)g(x) + r2(x)  

where r1(x) ≡ 0 or deg r1(x) < deg g(x), r2(x) ≡ 0 or deg r2(x) < deg g(x) 

Rearrange the terms: [q1(x) – q2(x)]g(x) = r2(x) – r1(x) …… (*) 

If r1(x) ≠ r2(x), deg g(x) ≤ deg[(q1(x) – q2(x))g(x)] = deg[r2(x) – r1(x)] 

 ≤ max[deg r1(x), deg r2(x)] 

 < deg g(x), which is a contradiction. 

∴ r1(x) ≡ r2(x); after substitution into (*), q1(x) ≡ q2(x) 
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By division algorithm, let f(x), g(x) ∈ F[x] \ {0}, then there exists a positive integer n ∈ ℕ such that 

f(x) = q0(x) g(x) + r0(x), deg r0(x) < deg g(x) 

g(x) = q1(x) r0(x) + r1(x), deg r1(x) < deg r0(x) 

r0(x) = q2(x) r1(x) + r2(x), deg r2(x) < deg r1(x) 

⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 

rn–2(x) = qn(x)rn–1(x) + rn(x), deg rn(x) < deg rn–1(x) 

rn–1(x) = qn+1(x) rn(x) 

In this case, rn(x) = HCF(f(x), g(x)). 

Proof: We shall prove that rn–i(x) is a multiple of rn(x) by MI on i. 

i = 0, rn(x) is a multiple of itself. 

i = 1, rn–1(x) = qn+1(x)rn(x), which is a multiple of rn(x). 

Suppose rn–i(x) = t(x)rn(x), for some t(x) ∈ F[x], and 

suppose rn–i+1(x) = u(x)rn(x), for some u(x) ∈ F[x], where i ≥ 1. 

Now rn–(i+1) = qn–i+1(x)rn–i(x) + rn–i+1(x), deg rn–i+1(x) < deg rn–i(x) 

 = qn–i+1(x)t(x)rn(x) + u(x)rn(x) 

 = [qn–i+1(x)t(x) + u(x)]rn(x) 

∴ rn–(i+1) is a multiple of rn(x). 

By MI, rn–i(x) is a multiple of rn(x) for i = 0, 1, 2, … , n 

In particular, i = n – 1, r1(x) is a multiple of rn(x). 

i = n, r0(x) is a multiple of rn(x). 

So g(x) = q1(x) r0(x) + r1(x), which is a multiple of rn(x). 

Also, f(x) = q0(x) g(x) + r0(x), which is a multiple of rn(x). 

∴ rn(x) is a common factor of g(x) and f(x). 

Now suppose d(x) ∈ F[x] \{0} such that d(x) divides both g(x) and f(x). 

Then d(x) divides [u(x)g(x) + v(x)f(x)] for all u(x), v(x) ∈ F[x] 

Claim rj(x) = mj(x) f(x) + nj(x) g(x), j = 0, 1, 2, … , n for some mj(x), nj(x) ∈ F[x] 

Induction on j. 

j = 0, r0(x) = f(x) – g(x)q0(x) ∴ It is true for j = 0. 

j = 1, r1(x) = g(x) – r0(x)q1(x) = g(x) – [f(x) – g(x)q0(x)]q1(x) 

 = –q1(x)f(x) + [1 + q0(x)q1(x)]g(x), ∴ It is also true for j = 1. 

Suppose rj(x) = mj(x) f(x) + nj(x) g(x), for j < k ≤ n. 

∵ rk–2(x) = qk(x)rk–1(x) + rk(x) 

∴ rk(x) = rk–2(x) – rk–1(x)qk(x) 

rk(x) = mk–2(x) f(x) + nk–2(x) g(x) – [mk–1(x) f(x) + nk–1(x) g(x)]qk(x), by induction assumption. 

rk(x) = [mk–2(x) – mk–1(x)qk(x)] f(x) + [nk–2(x) – nk–1(x) qk(x)]g(x) 

∴ It is also true for j = k. 

By M.I., it is true for all j = 0, 1, 2, ⋯ , n. 

When j = n, rn(x) = un(x) f(x) + v(x)g(x) 

∴ d(x) divides rn(x). 

rn(x) is the gcd of f(x) and g(x) over F. 
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Example 2 1989 Sample Paper 1 Q7 

Let P(x) = 2x5 + x3 + 3x2 + 1 and Q(x) = x3 + x + 1. 

(a) Show that P(x) and Q(x) are relatively prime. 

(b) Find two polynomial S(x) and T(x) such that P(x) S(x) + Q(x) T(x) ≡ 1. 

Solution (a) 2x2 – 1 2x5 + x3 + 3x2  + 1 x3  + x + 1 x – 1 

 2x5 + 2x3 + 2x2 x3 + x2 + 2x  

 –x3 + x2 + 1 –x2 – x + 1  

 –x3  – x – 1 –x2 – x – 2  

 x2 + x + 2  3  

∴ P(x) and Q(x) are relatively prime. 

(b) From (a), 3 = Q(x) – (x2 + x + 2)(x – 1) 

 = Q(x) – [P(x) – Q(x) (2x2 – 1)](x – 1) 

 = Q(x) (2x3 – 2x2 – x + 2) + P(x)(1 – x) 

∴ S(x) = ( )222
3

1 23 +−− xxx ; T(x) = ( )x−1
3

1
 

 

Example 3 HKU O Level 1959 Paper 1 Q6 (a) 

(a) Find the H.C.F. of x4 – 21x + 8 and 8x4 – 21x3 + 1. 

(b) Find the values of the constants a, b, a’, b’ so that 

(ax + b) (x4 – 21x + 8) + (a'x + b') (8x4 – 21x3 + 1) ≡ x2 – 3x + 1 

(a) x x4 – 21x + 8 8x4  – 21x3  + 1 8 

 x4 – 8x2 + 3x 8x4  – 168x + 64  

 8 8x2 – 24x + 8 – 21 – 21x3  + 168x – 63  

 x2 – 3x + 1 x3 – 8x + 3 x + 3 

  x3 – 8x + 3  

0 

∴ HCF = x2 – 3x + 1 

(b) We have already found out the H.C.F. is x2 – 3x + 1. By division, 

x4 – 21x + 8 = (x2 – 3x + 1)(x2 + 3x + 8); 8x4 – 21x3 + 1 = (x2 – 3x + 1)(8x2 + 3x + 1) 

So (ax + b) (x2 + 3x + 8) + (a’x + b’) (8x2 + 3x + 1) ≡ 1 

Using Euclidean Algorithm again, 

8x2 + 3x + 1 = 8(x2 + 3x + 8) – 21(x + 3) ⋯⋯ (1) 

x2 + 3x + 8 = (x + 3)x + 8   ⋯⋯ (2) 

x(1) + 21(2): 21(x2 + 3x + 8) + x(8x2 + 3x + 1) = 8x(x2 + 3x + 8) + 168 

(21 – 8x)(x2 + 3x + 8) + x(8x2 + 3x + 1) = 168 

( ) ( ) 11380
168

1
83

21

1

8

1 22 ≡++






 ++++






 − xxxxxx  
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1986 Paper 1 Q8 

Let f(x) and g(x) be two non-zero polynomials. A polynomial d(x) is said to be a Greatest Common 

Divisor (G.C.D.) of f(x) and g(x) if d(x) divides each of them and every common divisor of them also 

divides d(x). 

(a) Let d1(x) and d2(x) be two non-zero polynomials which divides each other.  

Show that d1(x) = kd2(x) for some non-zero constant k. 

(b) Let A be the set of non-zero polynomials p(x), where p(x) = m(x) f(x) + n(x)g(x) for some 

polynomials m(x) and n(x). 

(i) Show that if a polynomial s(x) divides both f(x) and g(x), then it divides every p(x) in A. 

(ii) Let p(x) be in A. Show that when f(x) is divided by p(x), then the remainder r(x) is either 

zero or a polynomial in A. 

(iii) Let d1(x) be in A with deg d1(x) ≤ deg p(x) for all p(x) in A. Show that d1(x) is a G.C.D. 

of f(x) and g(x). 

(c) Show that if d(x) is a G.C.D. of f(x) and g(x), then there exist polynomials m0(x) and n0(x) such 

that d(x) = m0(x) f(x) + n0(x) g(x). 

(a) d1(x) = p(x)d2(x) 

d2(x) = q(x)d1(x) 

deg d1(x) = deg p(x) + deg d2(x) ≥ deg d2(x) 

deg d2(x) = deg q(x) + deg d2(x) ≥ deg d1(x) 

∴ deg d1(x) = deg d2(x) and deg p(x) = 0 = deg q(x) 

 p(x) = k1, q(x) = k2 ≠ 0 

∴ d1(x) = kd2(x) for some non-zero constant k. 

(b) A = {p(x) ≠ 0: p(x) = m(x) f(x) + n(x)g(x) for some polynomials m(x) and n(x)} 

(i) If a polynomial s(x) divides both f(x) and g(x), then f(x) = s(x)u(x), g(x) = s(x)v(x). 

For every p(x) in A, p(x) = m(x) f(x) + n(x)g(x) = m(x)s(x)u(x) + n(x)s(x)v(x) 

p(x) = [m(x) u(x) + n(x) v(x)] s(x) 

∴ s(x) divides p(x). 

(ii) When f(x) is divided by p(x), let f(x) = p(x) Q(x) + r(x) 

The remainder r(x) is either zero or degree of r(x) < degree of f(x) 

If r(x) is a non-zero polynomial, then degree of r(x) < degree of f(x) 

f(x) = [m(x) f(x) + n(x)g(x)] Q(x) + r(x) 

r(x) = [1 – m(x)Q(x)]f(x) – n(x)Q(x)g(x) 

∴ r(x) ∈ A 

∴ The remainder r(x) is either zero or a polynomial in A. 

(iii) Let d1(x) be in A with deg d1(x) ≤ deg p(x) for all p(x) in A. 

Let d1(x) = m1(x) f(x) + n1(x)g(x) 

Consider f(x) ÷ d1(x). f(x) = q(x) d1(x) + r(x), where deg r(x) < deg d1(x) 

By the result of (b) (ii), r(x) ≡ 0 or r(x) ∈ A. 

Given that deg d1(x) ≤ deg p(x) for all p(x) in A. 

If r(x) ∈ A, then deg d1(x) ≤ deg r(x), which contradict that deg r(x) < deg d1(x) 
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∴ r(x) ≡ 0 

f(x) = q(x) d1(x), so d1(x) divides f(x). 

Similarly consider g(x) ÷ d1(x). It is easy to show that the remainder is zero and d1(x) 

divides g(x). 

∴ d1(x) is a common factor of f(x) and g(x) … (1) 

Let s(x) be a common factor of f(x) and g(x). 

By the result of (b) (i), s(x) divides every polynomial p(x) in A. 

In particular, d1(x) = m1(x)f(x) + n1(x)g(x) ∈ A 

So s(x) divides d1(x) ⋯⋯ (2) 

Combining (1) & (2), d1(x) is the G.C.D. of f(x) and g(x). 

(c) By (b) d1(x) = m1(x) f(x) + n1(x)g(x) is a G.C.D. of f(x) and g(x). 

Let d(x) be a G.C.D. of f(x) and g(x). 

By (a), d(x) and d1(x) divides each other. 

So d(x) = kd1(x) for some non-zero constant k. 

d(x) = k[m1(x) f (x) + n1(x)g(x)] 

d(x) = km1(x) f (x) + kn1(x)g(x) 

d(x) = m0(x) f (x) + n0(x)g(x), where m0(x) = km1(x) and n0(x) = kn1(x). 


