Supplementary exercise on Multiple Roots

Created by Mr. Francis Hung on 20210830

Last updated: 2021-08-30 The number α is called a double root of the polynomial function if $f(x) = (x - \alpha)^2 g(x)$ for some 1. polynomial function g. Prove that α is a double root of f if and only if $f(\alpha) = 0$ and $f'(\alpha) = 0$.

Hence or otherwise,

find the constants a and b so that $ax^{n+1} + bx^n + 1$ is divisible by $(x + 1)^2$, and (a)

prove that the polynomial $1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$ cannot have a double root. (b)

2 The number α is called a root of multiplicity r, r > 1, (or an r-fold root) of a polynomial (a) f if $f(x) = (x - \alpha)^r g(x)$ for some polynomial g such that $g(\alpha) \neq 0$. Prove the following statements:

If f has a root α of multiplicity r, then the derivative f' has a root α of multiplicity

if the derivative f' of a polynomial f has a root α of multiplicity r-1 and if $f(\alpha)=0$, (ii) then f has a root of multiplicity r.

Let n be any positive integer. Show that the polynomial $(x + 1)^n + (x - 1)^n$ has no multiple (b) root.

Let f be a polynomial of degree 3 such that f(x) + 1 is divisible by $(x - 1)^2$ and f(x) - 1 is (c) divisible by $(x + 1)^2$. Find the polynomial.

Prove that f(x) has α as a multiple root \Leftrightarrow $f(\alpha) = f'(\alpha) = 0$. 3.

Let α be a double root of the polynomial $[g(x)]^2 + [h(x)]^2$, where g(x) and h(x) are (b) polynomials without common factor. Show that α is also a root of $[g'(x)]^2 + [h'(x)]^2$.

P(x), Q(x) are given polynomials having no common factor. Prove that the values of k for 4. (a) which the equation P(x) - kQ(x) = 0 has a multiple root are given by $k = \frac{P(\alpha)}{O(\alpha)}$, where α is a root of the equation P(x) Q'(x) - P'(x) Q(x) = 0.

Hence or otherwise, find the values of k for which the equation $x^3 - 3x^2 + 3kx - 1 = 0$ has (b) a multiple root. Solve the equation for each case.

- 1 (a) $a = (-1)^{n+1} n, b = (-1)^{n+1} (n+1)$
- 2 (c) $f(x) = 0.5x^3 1.5x$
- 3 (a) (\Rightarrow) If f(x) has α as a multiple root,

 $f(x) = (x - \alpha)^m g(x)$, where m is an integer > 1 and g(x) is a polynomial in x and $g(\alpha) \neq 0$ clearly $f(\alpha) = 0$

$$f'(x) = (x - \alpha)^m g'(x) + m(x - \alpha)^{m-1} g(x)$$

$$f'(\alpha) = (\alpha - \alpha)^m g'(\alpha) + m(\alpha - \alpha)^{m-1} g(\alpha) = 0$$

$$(\Leftarrow)$$
 If $f(\alpha) = f'(\alpha) = 0$

 $f(x) = (x - \alpha)^m g(x)$, where $m \in \mathbb{N}$ and g(x) is a polynomial in x and $g(\alpha) \neq 0$.

If
$$m = 1$$
, then $f'(x) = (x - \alpha) g'(x) + g(x)$

$$f'(\alpha) = (\alpha - \alpha) g'(\alpha) + g(\alpha) = g(\alpha) \neq 0$$
 which contradict to the fact that $f'(\alpha) = 0$

$$\therefore m > 1$$

 \rightarrow f(x) has α as a multiple root

(b) Let
$$f(x) = [g(x)]^2 + [h(x)]^2$$

$$f'(x) = 2 g(x) g'(x) + 2 h(x) h'(x)$$

Given α be a double root of the polynomial $[g(x)]^2 + [h(x)]^2$

By the result of (a),
$$f(\alpha) = f'(\alpha) = 0$$

$$[g(\alpha)]^2 + [h(\alpha)]^2 = 0 \cdot \cdot \cdot \cdot \cdot \cdot \cdot (1)$$

and
$$2 g(\alpha) g'(\alpha) + 2 h(\alpha) h'(\alpha) = 0 \cdots (2)$$

From (1)
$$[h(\alpha)]^2 = -[g(\alpha)]^2$$

$$h(\alpha) = \pm i g(\alpha) \cdots (3)$$

Sub. (3) into (2),
$$g(\alpha)$$
 $g'(\alpha) \pm i g(\alpha)$ $h'(\alpha) = 0 \cdots (4)$

Case 1 If
$$g(\alpha) = 0$$
, then (1) becomes $h(\alpha) = 0$

Contradict to the fact that g(x) and h(x) have no common factors.

Case 2 If
$$g(\alpha) \neq 0$$
, (4) becomes $g'(\alpha) \pm i h'(\alpha) = 0$

$$g'(\alpha) = \mp i h'(\alpha)$$

$$[g'(\alpha)]^2 = -[h'(\alpha)]^2$$

$$[g'(\alpha)]^2 + [h'(\alpha)]^2 = 0$$

 α is also a root of $[g'(x)]^2 + [h'(x)]^2$

4 (b) $\alpha = 1, 1, -0.5 \Rightarrow k = 1, 1, -1.25$;

when
$$k = 1, x = 1, 1, 1$$

when
$$k = -1.25$$
, $x = 4$, -0.5 , -0.5

Test on multiple root

Created by Mr. Francis Hung on 20210830

- 1. The number α is called a root of multiplicity r, r > 1, (or an r-fold root) of a polynomial f if $f(x) = (x \alpha)^r g(x)$ for some polynomial g such that $g(\alpha) \neq 0$. Prove the following statements:
 - (a) If f has a root α of multiplicity r, then the derivative f' has a root α of multiplicity r-1; (5 marks)

Last updated: 2021-08-30

- (b) if the derivative f' of a polynomial f has a root α of multiplicity r-1 and if $f(\alpha) = 0$, then f has a root of multiplicity r; (10 marks)
- (c) if the derivative f' of a polynomial f has a root α of multiplicity r-1, then f does not necessarily have a root of multiplicity r. Prove it by giving a counter example. (5 marks)
- 2. Find the constants a and b so that $ax^{n+1} + bx^n + 1$ is divisible by $(x + 1)^2$. (20 marks)
- 3. Prove that the polynomial $1 + x + \frac{x^2}{2!} + ... + \frac{x^n}{n!}$ cannot have a double root. (20 marks)
- 4. Let f be a polynomial of degree 3 such that f(x) + 1 is divisible by $(x 1)^2$ and f(x) 1 is divisible by $(x + 1)^2$. Find the polynomial. (20 marks)
- 5. (a) P(x), Q(x) are given polynomials having no common factor. Prove that the values of k for which the equation P(x) kQ(x) = 0 has a multiple root are given by $k = \frac{P(\alpha)}{Q(\alpha)}$, where α is a root of the equation P(x) Q'(x) P'(x) Q(x) = 0. (6 marks)
 - (b) Hence or otherwise, find the values of k for which the equation $x^3 3x^2 + 3kx 1 = 0$ has a multiple root. Solve the equation for each case. (14 marks)

End of Paper

- 1. (a) $f(x) = (x \alpha)^r g(x)$, where g(x) is a polynomial and $g(\alpha) \neq 0$ $f'(x) = r(x - \alpha)^{r-1} g(x) + (x - \alpha)^r g'(x) = (x - \alpha)^{r-1} [r g(x) + (x - \alpha) g'(x)]$ Sub. $x = \alpha$ into $r g(x) + (x - \alpha) g'(x)$: $r g(\alpha) + (\alpha - \alpha) g'(\alpha) = r g(\alpha) \neq 0$ \therefore f' has a root α of multiplicity r - 1.
 - (b) $f'(x) = (x \alpha)^{r-1} Q(x)$ and $Q(\alpha) \neq 0$ and $f(\alpha) = 0$.

Let $f(x) = (x - \alpha)^m g(x)$, where $m \in \mathbb{N}$ and g(x) is a polynomial in x and $g(\alpha) \neq 0$.

$$f'(x) = m(x - \alpha)^{m-1} g(x) + (x - \alpha)^m g'(x) = (x - \alpha)^{m-1} [m g(x) + (x - \alpha) g'(x)]$$

$$\therefore (x - \alpha)^{m-1} [m g(x) + (x - \alpha) g'(x)] = (x - \alpha)^{r-1} Q(x)$$

If m > r, dividing throughout by $(x - \alpha)^{m-r}$: $(x - \alpha)^{m-r}[m g(x) + (x - \alpha) g'(x)] = Q(x)$

Take limit as
$$x \to \alpha$$
, $\lim_{x \to \alpha} Q(x) = \lim_{x \to \alpha} (x - \alpha) [mg(x) + (x - \alpha)g'(x)] = 0$

 \Rightarrow Q(α) = 0, contradicts to the fact that Q(α) \neq 0

If $m \le r$, dividing throughout by $(x - \alpha)^{r-m}$: $m g(x) + (x - \alpha) g'(x) = (x - \alpha)^{r-m} Q(x)$

Similar contradiction aroused for $g(\alpha) = 0$.

 $\therefore m = r, f \text{ has a root of multiplicity } r.$

(c) Let
$$f(x) = x^2 - 2x$$
, roots = 0 or 2
 $f'(x) = 2x - 2 = 2(x - 1)$; root $\alpha = 1$, multiplicity = 1
But clearly $\alpha = 1$ is not a root of $f(x) = 0$

2. Let
$$f(x) = ax^{n+1} + bx^n + 1$$
 is divisible by $(x + 1)^2$

$$f'(x) = (n+1)ax^n + nbx^{n-1}$$

$$f(-1) = a(-1)^{n+1} + b(-1)^n + 1 = 0 \qquad \dots \dots (1)$$

$$f'(-1) = (n+1)a(-1)^n + nb(-1)^{n-1} = 0$$
 (2)

$$n(1) + (2): na(-1)^{n+1} + (n+1)a(-1)^n + n = 0$$
$$(-1)^n a(n+1-n) = -n$$
$$a = (-1)^{n+1}n$$

$$(n+1)(1) + (2): (n+1)(-1)^n b + nb(-1)^{n-1} + n + 1 = 0$$

$$(-1)^n b(n+1-n) = -(n+1)$$

$$b = (-1)^{n+1}(n+1)$$

3. Let
$$f(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$$
.

If it has a common root α : $f(\alpha) = f'(\alpha) = 0$

$$1 + \alpha + \frac{\alpha^2}{2!} + \dots + \frac{\alpha^n}{n!} = 0 \qquad \dots \dots (1)$$

$$1 + \alpha + \frac{\alpha^2}{2!} + \dots + \frac{\alpha^{n-1}}{(n-1)!} = 0 \quad \dots (2)$$

$$(1) - (2): \ \frac{\alpha^n}{n!} = 0 \Rightarrow \alpha = 0$$

$$f(0) = 1 \neq 0$$

: it has no common root.

4.
$$f(x) + 1 = (x - 1)^2(ax + b)$$

$$f(x) = (x-1)^2(ax+b) - 1$$

$$f'(x) = a(x-1)^2 + 2(x-1)(ax+b)$$

$$f(x) - 1 = (x - 1)^{2}(ax + b) - 2$$
, which is divisible by $(x + 1)^{2}$

$$f(-1) - 1 = 0$$
 and $f'(-1) = 0$

$$(-2)^2(-a+b)-2=0$$
(1)

$$4a - 4(-a + b) = 0$$
 (2)

From (1):
$$-a + b = 0.5$$
 (3)

From (2):
$$2a - b = 0$$
 (4)

$$(3) + (4)$$
: $a = 0.5$; $b = 1$

$$f(x) = (x-1)^2(0.5x+1) - 1 = (x^2 - 2x + 1)(0.5x+1) - 1 = 0.5x^3 - 1.5x$$

5. (a) The equation P(x) - kQ(x) = 0 has a multiple root α .

$$P(\alpha) - kQ(\alpha) = 0$$
 (1)

$$P'(\alpha) - kQ'(\alpha) = 0$$
 ····· (2)

From (1) and (2):
$$k = \frac{P(\alpha)}{Q(\alpha)} = \frac{P'(\alpha)}{Q'(\alpha)}$$

$$P(\alpha) Q'(\alpha) - P'(\alpha) Q(\alpha) = 0$$

 \therefore α is a root of the equation P(x) Q'(x) - P'(x) Q(x) = 0.

(b) $x^3 - 3x^2 + 3kx - 1 = 0$ has a multiple root.

$$x^3 - 3x^2 - 1 + 3kx = 0$$

$$P(x) = x^3 - 3x^2 - 1$$
; $Q(x) = -3x$

$$P(x) O'(x) - P'(x) O(x) = 0$$

$$(x^3 - 3x^2 - 1)(-3) - (3x^2 - 6x)(-3x) = 0$$

$$x^3 - 3x^2 - 1 - 3x^3 + 6x^2 = 0$$

$$2x^3 - 3x^2 + 1 = 0$$

By testing, x = 1 is a root.

By division,
$$(x-1)(2x^2-x-1)=0$$

$$(x-1)^2(2x+1)=0$$

$$x = 1 \text{ or } -0.5$$

$$\therefore k = \frac{P'(\alpha)}{O'(\alpha)} = \frac{3(1-2\times1)}{-3} = 1 \text{ or } \frac{3(0.25+2\times0.5)}{-3} = -\frac{5}{4}$$

when
$$k = 1$$
, $x^3 - 3x^2 + 3x - 1 = 0 \Rightarrow (x - 1)^3 = 0 \Rightarrow x = 1$

when
$$k = -\frac{5}{4}$$
, $x^3 - 3x^2 - \frac{15}{4}x - 1 = 0 \Rightarrow 4x^3 - 12x^2 - 15x - 4 = 0$

Put
$$x = -0.5$$
: LHS = $4(-0.125) - 12(0.25) - 15(-0.5) - 4 = 0$ = RHS

 \therefore 2x + 1 is a factor.

By division,
$$(2x + 1)(2x^2 - 7x - 4) = 0$$

$$(2x+1)(2x+1)(x-4) = 0$$

$$x = -0.5 \text{ or } 4$$