Supplementary Exercise on Quadratic Equations

Created by Mr. Francis Hung 20121006

Last updated: August 30, 2021

Solve for the following equations.

(x-4)(2x+8)(x+4) = 0

 $2(21x^2 - 10) = 11x$ 3.

3x(-3x-2) = 15.

 $x^2 + 1 = 0$ 7.

 $(3x-4)^2 + (4x+6)^2 = 0$ 9.

11. $x^2 + 6(x-1)^2 + 3(x+1)^4 = 0$ 13. $x^2 + (2x-3)^2 = 9$

15. $(3x + 5)^4 - (2x - 7)^4 = 0$

17. $\frac{1}{(x-1)x} - \frac{1}{x(x+1)} = 0$

19. $\frac{x^2 + 4x - 1}{x^2 + 2x - 3} = \frac{2}{3} + \frac{1}{x + 3}$

21. $x^2 - (a + \frac{1}{a})x + 1 = 0$

23. $2^{2x} = 5(2^x) - 4$

25. $4 \times 5^{2x} + 5^x - 5 = 0$

27. $20^x - 401 + 400 \times 20^{-x} = 0$

29. $(\log x)^2 - 3 \log x + 2 = 0$

31. $\log x + \log (2x + 3) = \log 2$

By putting $y = x^2 + 3x$, solve $(x^2 + 3x)^2 = 2(x^2 + 3x + 4)$. 33.

 $2(2y^2 + 8y)^2 + 7(2y^2 + 8y) - 72 = 0$ 34.

35.

(a) Solve $\begin{cases} 5s + 2t = 8 \\ 3s - 5t = 11 \end{cases}$ (b) Hence solve $\begin{cases} 5(x^2 + x) + 2(2y^2 + 3y) = 8 \\ 3(x^2 + x) - 5(2y^2 + 3y) = 11 \end{cases}$

36.

(b) Solve for $t: 2(t^2 + \frac{1}{t^2}) - 3(t + \frac{1}{t}) - 1 = 0.$

 $3 \tan^2 \alpha + 2 \tan \alpha - 1 = 0$ 37.

39. $2 \sin^2 \theta - 3 \sin \theta \cos \theta + \cos^2 \theta = 0$

 $\tan \theta = \frac{1 + 5\cos \theta}{1 + 3\cos \theta}$ 41.

43.

(a) Show that $t^2 - t - 2 = 0$

(b) Hence find the value of t.

Let $x = \frac{2}{-1 + \frac{2}{-1 + \dots}}$ 45.

> Show that $x^2 - x - 2 = 0$. (a)

Hence find the value(s) of x.

 $(3x-5)(x^2-3x) = (3x-5)(2-3x)$ 2.

x(56x-15)=56

(x-4)(y+3)=06.

 $(2x-1)^2 + 3 = 0$ 8.

10. $(3x-4)^2 + (4y+6)^2 = 0$

12. $(2x + 3y - 1)^2 + (4x - y - 2)^2 = 0$

 $(x+1)^3 + x^3 = 0$ 14.

16. $x + 3 = \frac{5}{2} + \frac{14}{x}$

 $\frac{4}{x+5} - \frac{3}{x+4} = \frac{2}{x+3} - \frac{1}{x+2}$ 18.

 $20. \quad \frac{3x+5}{x+2} = \frac{4x+7}{x+2} - 1$

22. (x-5)(2x+3) = (a-5)(2a+3)

 $24. \quad x^{\log x} = \frac{100}{x}$

26. $9^x + 2 \times 3^x - 8 = 0$

28. $3^x - 24 - 3^{4-x} = 0$

30. $3(\log x)^2 - 10 \log x = 8$

32. $\log 2^x + \log (2^x - 3) - \log 4 = 0$

(a) Let $x = t + \frac{1}{t}$, express $t^2 + \frac{1}{t^2}$ in terms of x.

38. $8 \sin^2 x - 14 \cos x - 13 = 0$ 40. $2 \sin^2 2x + 3 \sin 2x = 2$

42. $2\sin^2 x \cdot \cos x = \cos x$

Let $t = \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \cdots}}}}$ 44. Let $t = \sqrt{10 - 3\sqrt{10 - 3\sqrt{10 - 3\sqrt{10 - \cdots}}}}$

(a) Find a suitable quadratic equation in t.

(b) Hence find the value of *t*.

1	4 or –4	2	$\frac{5}{3}$, $\sqrt{2}$ or $-\sqrt{2}$	3	$\frac{5}{6}$ or $-\frac{4}{7}$	4	$\frac{8}{7}$ or $-\frac{7}{8}$	5	$-\frac{1}{3}$ double root	
6	x = 4 or y = -3	7	no solution	8	no solution	9	no solution	10	$x = \frac{4}{3} \text{ and } y = -\frac{3}{2}$	
11		12	$x = \frac{1}{2} \text{ and } y$ $=0$	13	0 or $\frac{12}{5}$	14	$-\frac{1}{2}$	15	$\frac{2}{5}$ or -12	
16	$x = \frac{7}{2} \text{or } -4$	17	no solution	18	$-1 \text{ or } -\frac{7}{2}$	19	-2	20	x can be any real number except -2	
21	a	22	$a \text{ or } -a + \frac{7}{2}$	23	0 or 2	24	$\frac{1}{100}$ or 10	25	0	
26	$\frac{\log 2}{\log 3} = 0.631$	27	0 or 2	28	3	29	10 or 100	30	10000 or $10^{-\frac{2}{3}}$ (= 0.215)	
31	$\frac{1}{2}$	32	2	33	-4, -2, -1, 1	34	$-2, -2, \frac{1}{2} - \frac{9}{2}$	35	$t = -1, s = 2$ $(-2, -\frac{1}{2}), (-2, -1),$ $(1, -\frac{1}{2}), (1, -1)$	
36	(a) $x^2 - 2$ (b) $\frac{1}{2}$ or 2	37	18.43° or –45°	38	120°	39	26.57° or 45°	40	15°	
41	120° or 70.53°	42	–45°, 45° or 90°	43	2	44	(a) $t^2 + 3t - 10 = 0$ (b) $t = 2$	45	see below	

- 1. (x-4)(2x+8)(x+4) = 0 x = 4 or x = -4 or x = -4x = 4 or x = -4
- 3. $2(21x^{2} 10) = 11x$ $42x^{2} 20 = 11x$ $42x^{2} 11x 20 = 0$ (6x 5)(7x + 4) = 0 $x = \frac{5}{6} \text{ or } -\frac{4}{7}$
- 4. x (56x 15) = 56 $56x^2 - 15x - 56 = 0$ (7x - 8)(8x + 7) = 0 $x = \frac{8}{7} \text{ or } -\frac{7}{8}$
- 5. 3x(-3x-2) = 1 $-9x^2 - 6x = 1$ $9x^2 + 6x + 1 = 0$ $x = -\frac{1}{3}$ double root
- 6. (x-4)(y+3) = 0x = 4 or y = -3
- 7. $x^2 + 1 = 0$ L.H.S. $\ge 0 + 1 = 1$, R.H.S. = 0L.H.S. \ne R.H.S.

No solution

8. $(2x-1)^2 + 3 = 0$ L.H.S. $\ge 0 + 3 = 3$, R.H.S. = 0L.H.S. \ne R.H.S.

No solution

9. $(3x-4)^2 + (4x+6)^2 = 0$ Sum of squares = 0 \Rightarrow Each term = 0 $\Rightarrow x = \frac{4}{3} \text{ and } x = -\frac{3}{2}$

Which is a contradiction

.. No solution

- 10. $(3x-4)^2 + (4y+6)^2 = 0$ Sum of squares = $0 \Rightarrow$ Each term = 0 $\Rightarrow x = \frac{4}{3} \text{ and } y = -\frac{3}{2}$
- 11. $x^2 + 6(x-1)^2 + 3(x+1)^4 = 0$ Sum of squares $= 0 \Rightarrow$ Each term = 0 $\Rightarrow x = 0$ and x = 1 and x = -1Which is a contradiction \therefore No solution
- 12. $(2x + 3y 1)^2 + (4x y 2)^2 = 0$ Sum of squares = $0 \Rightarrow$ Each term = 0 $2x+3y-1 = 0 \cdots (1)$ and $4x-y-2 = 0 \cdots (2)$
 - (1) +3(2): $14x 7 = 0 \Rightarrow x = \frac{1}{2}$ ··· (3)
 - Sub. (3) into (2): $4 \cdot (\frac{1}{2}) y 2 = 0 \Rightarrow y = 0$
 - $\therefore x = \frac{1}{2} \text{ and } y = 0$

13.
$$x^2 + (2x - 3)^2 = 9$$

 $x^2 + 4x^2 - 12x + 9 = 9$
 $5x^2 - 12x = 0 \Rightarrow x = 0 \text{ or } \frac{12}{5}$

14.
$$(x+1)^3 + x^3 = 0$$

 $(x+1+x)[(x+1)^2 - x(x+1) + x^2] = 0$
 $(2x+1)(x^2 + 2x + 1 - x^2 - x + x^2) = 0$
 $2x+1=0$ or $x^2 + x + 1 = 0$
 $x = -\frac{1}{2}$ or $\Delta = 1^2 - 4(1)(1) < 0$
 $x = -\frac{1}{2}$ or no real solution
 $x = -\frac{1}{2}$ only

15.
$$(3x+5)^4 - (2x-7)^4 = 0$$

 $[(3x+5)^2 - (2x-7)^2][(3x+5)^2 + (2x-7)^2] = 0$
 $(x+12)(5x-2) = 0$ or $(x=-\frac{5}{3})$ and $(x=\frac{7}{2})$

$$(x = -12 \text{ or } x = \frac{2}{5}) \text{ or no solution}$$

 $x = -12 \text{ or } x = \frac{2}{5}$

16.
$$x + 3 = \frac{5}{2} + \frac{14}{x}$$
$$2x^{2} + 6x = 5x + 28$$
$$2x^{2} + x - 28 = 0$$
$$(2x - 7)(x + 4) = 0$$
$$x = \frac{7}{2} \text{ or } -4$$

17.
$$\frac{1}{(x-1)x} - \frac{1}{x(x+1)} = 0$$
$$\frac{(x+1) - (x-1)}{x(x-1)(x+1)} = 0$$
$$\frac{2}{x(x-1)(x+1)} = 0$$
$$2 = 0$$

18.
$$\frac{4}{x+5} - \frac{3}{x+4} = \frac{2}{x+3} - \frac{1}{x+2}$$

$$\frac{4(x+4) - 3(x+5)}{(x+4)(x+5)} = \frac{2(x+2) - (x+3)}{(x+2)(x+3)}$$

$$\frac{(x+1)}{(x+4)(x+5)} = \frac{(x+1)}{(x+2)(x+3)}$$

$$(x+1)(x+2)(x+3) = (x+1)(x+4)(x+5)$$

$$(x+1)(x+2)(x+3) - (x+1)(x+4)(x+5) = 0$$

$$(x+1)[(x+2)(x+3) - (x+4)(x+5)] = 0$$

$$(x+1)[x^2 + 5x + 6 - (x^2 + 9x + 20)] = 0$$

$$(x+1)(-4x - 14) = 0$$

$$x = -1 \text{ or } -\frac{7}{2}$$

19.
$$\frac{x^2 + 4x - 1}{x^2 + 2x - 3} = \frac{2}{3} + \frac{1}{x + 3}, x \neq 1 \text{ and } x \neq -3$$

$$\frac{x^2 + 4x - 1}{(x + 3)(x - 1)} = \frac{2}{3} + \frac{1}{x + 3}$$

$$3(x^2 + 4x - 1) = 2(x^2 + 2x - 3) + 3(x - 1)$$

$$3x^2 + 12x - 3 = 2x^2 + 4x - 6 + 3x - 3$$

$$x^2 + 5x + 6 = 0$$

$$(x + 2)(x + 3) = 0$$

$$x = -2 \text{ or } x = -3 \text{ (rejected)}$$

$$x = -2 \text{ only}$$
20.
$$\frac{3x + 5}{x + 2} = \frac{4x + 7}{x + 2} - 1, x \neq -2$$

20.
$$\frac{3x+5}{x+2} = \frac{4x+7}{x+2} - 1, x \neq -2$$

$$3x+5 = 4x+7 - (x+2)$$

$$3x+5 = 3x+5$$
which is always true
$$x \text{ can be any real number except } -2.$$

21.
$$x^{2} - (a + \frac{1}{a})x + 1 = 0$$

 $(x - a)(x - \frac{1}{a}) = 0$
 $x = a \text{ or } x = \frac{1}{a}$

22.
$$(x-5)(2x+3) = (a-5)(2a+3)$$

 $2x^2 - 7x - 15 = 2a^2 - 7a - 15$
 $2x^2 - 2a^2 - 7x + 7a = 0$
 $2(x+a)(x-a) - 7(x-a) = 0$
 $(x-a)[2(x+a) - 7] = 0$
 $x = a \text{ or } -a + \frac{7}{2}$

23.
$$2^{2x} = 5(2^x) - 4$$

 $(2^x)^2 - 5(2^x) + 4 = 0$
 $(2^x - 1)(2^x - 4) = 0$
 $2^x = 1 \text{ or } 2^2$
 $x = 0 \text{ or } 2$

$$24. \quad x^{\log x} = \frac{100}{x}$$

x = 0

$$\log(x^{\log x}) = \log(\frac{100}{x})$$

$$\log x (\log x) = \log 100 - \log x$$

$$(\log x)^2 + \log x - 2 = 0$$

$$(\log x + 2)(\log x - 1) = 0$$

$$\log x = -2 \text{ or } 1$$

$$x = 10^{-2} \text{ or } 10^1$$

$$x = \frac{1}{100} \text{ or } 10$$
25.
$$4 \times 5^{2x} + 5^x - 5 = 0$$

$$4 \times (5^x)^2 + 5^x - 5 = 0$$

$$(4 \times 5^x + 5)(5^x - 1) = 0$$

$$5^x = -\frac{5}{4} \text{ (rejected) or } 1$$

26.
$$9^{x} + 2 \times 3^{x} - 8 = 0$$

 $(3^{x})^{2} + 2 \times 3^{x} - 8 = 0$
 $(3^{x} - 2)(3^{x} + 4) = 0$
 $3^{x} = 2 \text{ or } -4 \text{ (rejected)}$
 $\log 3^{x} = \log 2$
 $x \log 3 = \log 2 \Rightarrow x = \frac{\log 2}{\log 3} = 0.631$

27.
$$20^{x} - 401 + 400 \times 20^{-x} = 0$$
$$20^{x} - 401 + 400 \times \frac{1}{20^{x}} = 0$$
$$(20^{x})^{2} - 401 \times 20^{x} + 400 = 0$$
$$(20^{x} - 1)(20^{x} - 400) = 0$$
$$20^{x} = 1 \text{ or } 20^{2}$$
$$x = 0 \text{ or } 2$$

28.
$$3^{x} - 24 - 3^{4-x} = 0$$

 $3^{x} - 24 - \frac{3^{4}}{3^{x}} = 0$
 $(3^{x})^{2} - 24 \times 3^{x} - 81 = 0$
 $(3^{x} - 27)(3^{x} + 3) = 0$
 $3^{x} = 3^{3}$ or -3 (rejected)
 $x = 3$

29.
$$(\log x)^2 - 3 \log x + 2 = 0$$

 $(\log x - 1)(\log x - 2) = 0$
 $\log x = 1 \text{ or } 2$
 $x = 10^1 \text{ or } 10^2$
 $x = 10 \text{ or } 100$

30.
$$3(\log x)^2 - 10 \log x = 8$$

 $3(\log x)^2 - 10 \log x - 8 = 0$
 $(\log x - 4)(3 \log x + 2) = 0$
 $\log x = 4 \text{ or } -\frac{2}{3}$
 $x = 10^4 \text{ or } 10^{-\frac{2}{3}}$
 $x = 10000 \text{ or } 0.215 \text{ (correct to 3 sig. fig.)}$

31.
$$\log x + \log (2x + 3) = \log 2$$

 $\log x(2x + 3) = \log 2$
 $2x^2 + 3x = 2$
 $2x^2 + 3x - 2 = 0$
 $(2x - 1)(x + 2) = 0$
 $x = \frac{1}{2}$ or -2

Put $x = \frac{1}{2}$ into the original equation

LHS =
$$\log \frac{1}{2} + \log(1+3)$$

= $\log \left(\frac{1}{2} \times 4\right) = \log 2 = \text{RHS}$

Put x = -2 into the original equation LHS = $\log(-2) + \log(-1 + 3)$ which is undefined, rejected

$$\therefore x = \frac{1}{2}$$

32.
$$\log 2^{x} + \log (2^{x} - 3) - \log 4 = 0$$

 $\log 2^{x}(2^{x} - 3) = \log 4$
 $(2^{x})^{2} - 3(2^{x}) - 4 = 0$
 $(2^{x} - 4)(2^{x} + 1) = 0$
 $2^{x} = 4 \text{ or } -1 \text{ (rejected)}$
 $x = 2$

33.
$$(x^2 + 3x)^2 = 2(x^2 + 3x + 4)$$

Let $y = x^2 + 3x$, the equation becomes $y^2 = 2(y + 4)$
 $y^2 - 2y - 8 = 0$
 $(y - 4)(y + 2) = 0$
 $y = 4 \text{ or } -2$
When $y = 4$, $x^2 + 3x = 4$
 $x^2 + 3x - 4 = 0$
 $(x - 1)(x + 4) = 0$
 $x = 1 \text{ or } -4$
When $y = -2$, $x^2 + 3x = -2$
 $x^2 + 3x + 2 = 0$
 $(x + 1)(x + 2) = 0$
 $x = -1 \text{ or } -2$

$$\therefore x = -4, -2, -1, 1$$
34. $2(2y^2 + 8y)^2 + 7(2y^2 + 8y) - 72 = 0$
Let $u = 2y^2 + 8y$, the equation becomes
$$2u^2 + 7u - 72 = 0$$

$$(2u - 9)(u + 8) = 0$$

$$u = \frac{9}{2} \text{ or } -8$$

When
$$u = \frac{9}{2}$$
, $2y^2 + 8y = \frac{9}{2}$
 $4y^2 + 16y - 9 = 0$
 $(2y + 9)(2y - 1) = 0$
 $y = -\frac{9}{2}$ or $\frac{1}{2}$
When $y = -8$, $2y^2 + 8y = -8$
 $y^2 + 4y + 4 = 0$
 $(y + 2)^2 = 0$
 $\therefore y = -\frac{9}{2}$, -2 or $\frac{1}{2}$

35. (a) Solve
$$\begin{cases} 5s + 2t = 8 & \cdots (1) \\ 3s - 5t = 11 & \cdots (2) \end{cases}$$
$$3(1): 15s + 6t = 24$$
$$5(2): 15s - 25t = 55$$
$$3(1) - 5(2): 31t = -31$$
$$t = -1$$
Sub. $t = -1$ into (2): $3s + 5 = 11$
$$s = 2$$
$$\therefore t = -1 \text{ or } s = 2$$

(b)
$$\begin{cases} 5(x^2 + x) + 2(2y^2 + 3y) = 8 \\ 3(x^2 + x) - 5(2y^2 + 3y) = 11 \end{cases}$$
Let $s = x^2 + x$, and $t = 2y^2 + 3y$.
$$\begin{cases} 5s + 2t = 8 & \cdots (1) \\ 3s - 5t = 11 & \cdots (2) \end{cases}$$
By (2) $s = 2$, $t = -1$

$$x^{2} + x = 2, 2y^{2} + 3y = -1$$

$$x^{2} + x - 2 = 0, 2y^{2} + 3y + 1 = 0$$

$$(x + 2)(x - 1) = 0, (2y + 1)(y + 1) = 0$$

$$x = -2 \text{ or } 1; y = -\frac{1}{2} \text{ or } -1$$

$$(x,y) = (-2, -\frac{1}{2}), (-2, -1), (1, -\frac{1}{2}), (1, -1).$$

36. (a)
$$x = t + \frac{1}{t} \Rightarrow x^2 = t^2 + 2 + \frac{1}{t^2}$$

$$t^2 + \frac{1}{t^2} = x^2 - 2$$

(b)
$$2(t^2 + \frac{1}{t^2}) - 3(t + \frac{1}{t}) - 1 = 0$$

Let $x = t + \frac{1}{t}$, by (a) , $t^2 + \frac{1}{t^2} = x^2 - 2$
It becomes $2(x^2 - 2) - 3x - 1 = 0$
 $2x^2 - 3x - 5 = 0$
 $(2x - 5)(x + 1) = 0$
 $x = \frac{5}{2}$ or -1
When $x = \frac{5}{2}$, $t + \frac{1}{2} = \frac{5}{2}$

When
$$x = \frac{5}{2}$$
, $t + \frac{1}{t} = \frac{5}{2}$
 $2t^2 + 2 = 5t$
 $2t^2 - 5t + 2 = 0$
 $(2t - 1)(t - 2) = 0$
 $t = \frac{1}{2}$ or 2

When
$$x = -1$$
, $t + \frac{1}{t} = -1$
 $t^2 + 1 = -t$
 $t^2 + t + 1 = 0$
 $\Delta = b^2 - 4ac = 1^2 - 4 = -3 < 0$
 $\therefore t = \frac{1}{2}$ or 2

37.
$$3 \tan^2 \alpha + 2 \tan \alpha - 1 = 0$$

 $(3 \tan \alpha - 1)(\tan \alpha + 1) = 0$
 $\tan \alpha = \frac{1}{3}$ or -1

$$\alpha = 18.43^{\circ} \text{ or } -45^{\circ}$$

38.
$$8 \sin^2 x - 14 \cos x - 13 = 0$$

$$8(1 - \cos^2 x) - 14 \cos x - 13 = 0$$

$$8 \cos^2 x + 14 \cos x + 5 = 0$$

$$(4 \cos x + 5)(2\cos x + 1) = 0$$

$$\cos x = -\frac{5}{4} \text{ (rejected) or } -\frac{1}{2}$$

39.
$$2 \sin^2 \theta - 3 \sin \theta \cos \theta + \cos^2 \theta = 0$$
$$(2 \sin \theta - \cos \theta)(\sin \theta - \cos \theta) = 0$$
$$2 \sin \theta = \cos \theta \text{ or } \sin \theta = \cos \theta$$
$$\tan \theta = \frac{1}{2} \text{ or } 1$$
$$\theta = 26.57^{\circ} \text{ or } 45^{\circ}$$

40.
$$2 \sin^2 2x + 3 \sin 2x = 2$$

 $2 \sin^2 2x + 3 \sin 2x - 2 = 0$
 $(2 \sin 2x - 1)(\sin 2x + 2) = 0$
 $\sin 2x = \frac{1}{2}$ or -2 (rejected)
 $2x = 30^\circ \Rightarrow x = 15^\circ$

41.
$$\tan \theta = \frac{1 + 5\cos \theta}{\sin \theta}$$
$$\tan \theta \sin \theta = 1 + 5\cos \theta$$
$$\frac{\sin^2 \theta}{\cos \theta} = 1 + 5\cos \theta$$
$$\sin^2 \theta = \cos \theta + 5\cos^2 \theta$$
$$1 - \cos^2 \theta = \cos \theta + 5\cos^2 \theta$$
$$6\cos^2 \theta + \cos \theta - 1 = 0$$

$$(2\cos\theta + 1)(3\cos\theta - 1) = 0$$
$$\cos\theta = -\frac{1}{2} \text{ or } \frac{1}{3}$$

$$\theta = 120^{\circ} \text{ or } 70.53^{\circ}$$

42.
$$2 \sin^2 x \cdot \cos x = \cos x$$

 $2 \sin^2 x \cdot \cos x - \cos x = 0$
 $\cos x (2 \sin^2 x - 1) = 0$
 $\cos x = 0 \text{ or } \sin x = \frac{1}{\sqrt{2}} \text{ or } -\frac{1}{\sqrt{2}}$
 $x = 90^\circ, 45^\circ \text{ or } -45^\circ$

43. (a)
$$t^2 = 2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{\cdots}}}}$$

 $t^2 = 2 + t$
 $t^2 = -t - 2 = 0$

(b)
$$t = 2 \text{ (reject } t = -1)$$

44. (a) Let
$$t = \sqrt{10 - 3\sqrt{10 - 3\sqrt{10 - 3\sqrt{10 - \cdots}}}}$$

 $t^2 = 10 - 3\sqrt{10 - 3\sqrt{10 - 3\sqrt{10 - \cdots}}}$
 $t^2 = 10 - 3t$
 $t^2 + 3t - 10 = 0$

(b)
$$(t-2)(t+5) = 0$$

 $t = 2 \text{ or } -5 \text{ (rejected)}$

45. (a)
$$t = 2 \text{ or } -5 \text{ (rejected)}$$

$$\frac{2}{x} = -1 + \frac{2}{-1 + \frac{2}{-1 + \cdots}}$$

$$\frac{2}{x} = -1 + x \implies 2 = -x + x^2$$

$$x$$

$$x^{2} - x - 2 = 0$$

(b)
$$(x-2)(x+1) = 0$$

 $\Rightarrow x = 2 \text{ or } -1$
Consider the following s

Consider the following sequences

(i)
$$2, \frac{2}{-1+2}, \frac{2}{-1+\frac{2}{-1+2}}, \dots$$

Each term is equal to 2.

ratic Equation Answers

(ii)
$$\frac{2}{-1}$$
, $\frac{2}{-1 + \frac{2}{-1}}$, $\frac{2}{-1 + \frac{2}{-1}}$, ...

This sequence is equivalent to $-2, -\frac{2}{3}, -\frac{6}{5}, \cdots$

It converges to -1. However, x cannot converges to two different numbers. .: There is no solution.