
Angle bisector, circumcentre and altitude

Created by Francis Hung

Last updated: 02 September 2021

ABC is an acute-angled triangle with circumcentre P. If AD is the altitude to BC, prove that the bisector of angle A bisects $\angle DAP$.

AE is the angle bisector.

Then
$$\angle BAE = \angle CAE \cdots (1)$$

Let
$$\angle BAP = x$$
, $\angle CAD = y$.

Since P is the circumcentre, if F is the mid point of AB, then PF is the perpendicular bisector of AB. Draw the circumcircle ABC.

$$\angle APF = 90^{\circ} - x \qquad \angle \text{ sum of } \Delta$$

$$\angle BPF = 90^{\circ} - x$$
 $\triangle APF \cong \triangle BPF$

$$\therefore \angle APB = 180^{\circ} - 2x$$

$$\angle ACB = 90^{\circ} - x$$
 \(\neq \text{ at circumference half } \neq \text{ at centre}

$$90^{\circ} - x + y = 90^{\circ} \angle \text{sum of } \Delta ADC$$

$$x = y \cdot \cdots \cdot (2)$$

Combine (1) and (2),

$$\angle DAE = \angle PAE$$

Therefore, the bisector of angle A bisects $\angle DAP$.