Centroid

Created by Mr. Francis Hung on 21 April 2011

Theorem: The three **medians** of a triangle are **concurrent** at a point.

In $\triangle ABC$, let D, E and F be the mid points of

BC, CA and AB respectively.

The theorem says that the medians AD, BE

and CF meet at a point G.

G is called the **centroid** of the triangle.

Proof: Suppose the medians *BE* and *CF* intersects at *G*.

To show that the line AG produced cuts BC at D is a median.

Join AG, and produce it to K, so that AG = GK.

Suppose AGK cuts BC at D. Join BK, CK.

 $\therefore AG = GK$ (by construction)

AE = EC (E is the mid point)

By mid point theorem, $GE = \frac{1}{2} KC$, GE // KC

 $\therefore AG = GK$ (by construction)

AF = FB (F is the mid point)

By mid point theorem, $GF = \frac{1}{2} KB$, GF // KB

 \therefore GE // KC and GF // KB

:. BKCG is a parallelogram.

BD = DC (diagonals of a parallelogram.)

Therefore, the theorem is proved.

Furthermore, $GE = \frac{1}{2}KC = \frac{1}{2}BG$

$$GF = \frac{1}{2} KB = \frac{1}{2} CG$$

so BG : GE = CG : GF = 2 : 1.

Similarly we can prove that AG : GD = 2 : 1.

The centriod divides each median in the ratio 2:1.

Last updated: 2021-09-03

Method 2 To prove that the 3 medians are **concurrent** at the **centroid**. Suppose the medians BE and CF intersects at G.

Try to show that the line AG produced cuts BC at D is a median.

Draw a line JAI // BC, cutting BE produced at I, and CF produced at J.

(alt. \angle s, JI // BC)

AE = EC

(given that E is a mid-point)

 $\angle AEI = \angle CEB$

(vert. opp. \angle s)

 $\therefore \Delta AEI \cong \Delta CEB$

(A.S.A.)

 $AI = BC \cdot \cdots \cdot (1)$

(corr. sides, $\cong \Delta s$)

 $BE = EI \cdot \cdots \cdot (2)$

(corr. sides, $\cong \Delta s$)

 $\angle JAF = \angle CBF$

(alt. \angle s, JI // BC)

AF = FB

(given that *F* is a mid-point)

 $\angle AFJ = \angle BFC$

(vert. opp. \angle s)

 $\therefore \Delta AFJ \cong \Delta BFC$

(A.S.A.)

 $JA = BC \cdot \cdots \cdot (3)$

(corr. sides, $\cong \Delta s$)

 $CF = FJ \cdot \cdots \cdot (4)$

(corr. sides, $\cong \Delta s$)

By (1) and (3), $JI = 2BC \cdots (5)$

$$\angle JIG = \angle CBG$$

(alt.
$$\angle$$
s, $JI // BC$)

$$\angle IGJ = \angle BGC$$

(vert. opp. \angle s)

 $\angle IJG = \angle BCG$

(alt. \angle s, JI // BC)

 $\therefore \Delta GIJ \sim \Delta GBC$

(Equiangular)

$$\frac{GI}{BG} = \frac{GJ}{CG} = \frac{JI}{BC} = 2 \cdots (6)$$

(corr. sides, $\sim \Delta s$) and by (5)

$$\frac{2BE}{BG} = \frac{BI}{BG} = \frac{BG + GI}{BG} = 1 + \frac{GI}{BG} = 1 + 2 = 3$$
 by (2) and (6)

$$\Rightarrow \frac{BE}{BG} = \frac{3}{2} \Rightarrow \frac{BG + GE}{BG} = \frac{3}{2} \Rightarrow 1 + \frac{GE}{BG} = \frac{3}{2} \Rightarrow \frac{GE}{BG} = \frac{1}{2} \Rightarrow BG : GE = 2 : 1 \cdots (7)$$

$$\frac{2CF}{CG} = \frac{CJ}{CG} = \frac{CG + GJ}{CG} = 1 + \frac{GJ}{CG} = 1 + 2 = 3$$
 by (4) and (6)

$$\Rightarrow \frac{CF}{CG} = \frac{3}{2} \Rightarrow \frac{CG + GF}{CG} = \frac{3}{2} \Rightarrow 1 + \frac{GF}{CG} = \frac{3}{2} \Rightarrow \frac{GF}{CG} = \frac{1}{2} \Rightarrow CG : GF = 2 : 1 \cdots (8)$$

Join AG and produce AG to cut BC at D.

$$\angle IAG = \angle BDG$$

(alt.
$$\angle$$
s, $JI // BC$)

 $\angle AGI = \angle DGB$

(vert. opp. \angle s)

 $\angle AIG = \angle DBG$

(alt. \angle s, JI // BC)

 $\therefore \Delta AGI \sim \Delta DGB$

(Equiangular)

(corr. sides $\sim \Delta s$)

:.
$$AG : GD = 2 : 1$$
 and $BD = \frac{1}{2}GI = \frac{1}{2}BC$

The 3 medians are concurrent at the centroid G.

Method 3 To prove that the 3 medians are **concurrent** at the **centroid**.

Suppose the medians BE and CF intersects at G.

Try to show that the line AG produced cuts BC at D is a median.

Join FE.

$$\frac{AF}{AB} = \frac{1}{2} = \frac{AE}{AC}$$

(:: E, F are the mid-points)

$$\angle EAF = \angle CAB$$

 $(\text{common } \angle s)$

$$\therefore \Delta AEF \sim \Delta ACB$$

(2 sides proportional, included \angle)

$$\angle AFE = \angle ABC$$

(corr. $\angle s$, $\sim \Delta s$)

$$FE // BC \cdots (1)$$

(corr. ∠s eq.)

$$\frac{FE}{BC} = \frac{AF}{AB} = \frac{1}{2} \quad \dots \quad (2)$$

(corr. sides, $\sim \Delta s$)

$$\angle GEF = \angle GBC$$

(alt. \angle s, FE // BC)

$$\angle EGF = \angle BGC$$

(vert. opp. \angle s) (alt. \angle s, FE // BC)

$$\angle GFE = \angle GCB$$

 $\therefore \Delta GEF \sim \Delta GBC$

(equiangular)

$$\frac{FG}{GC} = \frac{EG}{GB} = \frac{FE}{BC} = \frac{1}{2} \quad \cdots \quad (3)$$

(corr. sides, $\sim \Delta s$) and by (2)

Join AG and produce AG to cut BC at D.

Through *E* draw a line parallel to *AD* cutting *BC* at *H*.

$$\angle DAC = \angle HEC$$

(corr. \angle s, AD // EH)

$$\angle ACD = \angle ECH$$

 $(common \angle s)$

$$\angle ADC = \angle EHC$$

(corr. \angle s, AD // EH)

$$\therefore \Delta ACD \sim \Delta ECH$$

(Equiangular)

$$\frac{AD}{EH} = \frac{CD}{CH} = \frac{AC}{EC} = 2 \quad \dots \quad (4)$$

(corr. sides $\sim \Delta s$, E is the mid-point)

$$\Rightarrow CD = 2CH \cdot \cdots \cdot (5)$$

(corr. \angle s, AD // EH)

$$\angle BGD = \angle BEH$$

 $\angle GBD = \angle EBH$

(common ∠s)

$$\angle BDG = \angle BHE$$

(corr. \angle s, AD // EH)

$$\therefore \Delta BGD \sim \Delta BEH$$

(Equiangular)

$$\frac{BD}{BH} = \frac{GD}{EH} = \frac{BG}{BE} = \frac{2}{3} \quad \cdots \quad (6)$$

(corr. sides $\sim \Delta s$, E is the mid-point) and by (3)

(6)÷(4)
$$\frac{GD}{EH} \div \frac{AD}{EH} = \frac{2}{3} \div 2$$

$$\Rightarrow \frac{GD}{AD} = \frac{1}{3} \Rightarrow AG : GD = 2 : 1 \cdots (7)$$

From (6),
$$BD = \frac{2}{3}BH = \frac{2}{3}(BD + DH)$$

$$\Rightarrow \frac{1}{3}BD = \frac{2}{3}DH \Rightarrow BD = 2DH \cdots (8)$$

By (4),
$$CD = 2CH \cdot \cdots \cdot (9)$$

$$(8) + (9) BC = BD + CD = 2(DH + CH) = 2CD$$

- \Rightarrow D is the mid-point of BC
- \Rightarrow AD is the median
- \Rightarrow The 3 medians are concurrent at the centroid G.

Introduce a rectangular coordinates system as shown. Let the coordinates of $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ respectively. Express the coordinates of the centroid G in terms of x_1, x_2, x_3, y_1, y_2 and y_3 .

 $D(x_0, y_0)$ is the mid-point of *BC*. $D = \left(\frac{x_2 + x_3}{2}, \frac{y_2 + y_3}{2}\right)$

G(x, y) is the centroid. AG : GD = 2 : 1.

$$G = \left(\frac{x_1 + 2x_0}{2+1}, \frac{y_1 + 2y_0}{2+1}\right)$$

$$= \left(\frac{x_1 + 2 \cdot \frac{x_2 + x_3}{2}}{3}, \frac{y_1 + 2 \cdot \frac{y_2 + y_3}{2}}{3}\right)$$

$$G = \left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$$

Example Let the coordinates of A, B and C be (-2, 8), (2, 2), (9, 5).

Then the coordinates of the centroid = $\left(\frac{-2+2+9}{3}, \frac{8+2+5}{3}\right)$ = (3, 5).