Incentre Example 1

Reference: 證明內心的技巧 http://www.mathdb.org/resource_sharing/geometry/sc_incentres.doc

Created by: Mr. Francis Hung

Last updated: 3 September 2021

Let P and Q be the centres of circles C_1 and C_2 intersecting at two distinct points A and B. If PB is extended to meet C_2 at C and QB is extended to meet C_1 at D, prove that B is the incentre of $\triangle ACD$.

Proof: Join *PD* and *QC*. Let $\angle BAD = \alpha$

$$\angle BPD = 2\alpha \ (\angle \text{ at centre twice } \angle \text{ at } \bigcirc^{\text{ce}})$$

PD = PB (radii of circle C_1)

$$\angle PBD = (180^{\circ} - 2\alpha) \div 2 = 90^{\circ} - \alpha \ (\angle \text{ sum of } \Delta)$$

$$\angle QBC = \angle PBD = 90^{\circ} - \alpha \text{ (vert. opp. } \angle \text{s)}$$

QB = QC (radii of circle C_2)

$$\angle BQC = 180^{\circ} - 2(90^{\circ} - \alpha) = 2\alpha \ (\angle \text{ sum of } \Delta)$$

 $\angle BAC = \alpha \ (\angle \text{ at centre twice } \angle \text{ at } \bigcirc^{\text{ce}})$

$$\therefore \angle BAD = \angle BAC$$

BA is the \angle bisector of $\angle CAD$

Also,
$$\angle CPD = 2\alpha = \angle CQD = \angle CAD$$
 (proved)

 $\therefore C, Q, A, P, D$ are concyclic

(converse, \angle s in the same segment)

AP = PD (radii of circle C_1)

$$\angle ACP = \angle DCP$$
 (eq. chords eq. \angle s)

similarly AQ = CQ (radii of C_2)

$$\angle ADQ = \angle CDQ$$
 (eq. chords eq. \angle s)

 $\therefore BC$ bisects $\angle ACD$ and BD bisects $\angle ADC$.

 $\therefore B$ is the incentre of $\triangle ACD$.

Let P and Q be the centres of circles C_1 and C_2 intersecting at two distinct points A and B.

If PB intersects C_2 at C and QB intersects C_1 at D, prove that B is the excentre of $\triangle ACD$.

Proof: Join *PD* and *QC*. Let $\angle BAD = \alpha$

 $\angle BPD = 2\alpha \ (\angle \text{ at centre twice } \angle \text{ at } \odot^{\text{ce}})$

PD = PB (radii of circle C_1)

 $\angle PBD = (180^{\circ} - 2\alpha) \div 2 = 90^{\circ} - \alpha \ (\angle \text{ sum of } \Delta)$

QB = QC (radii of circle C_2)

 $\angle QBC = \angle QCB = 90^{\circ} - \alpha \text{ (base } \angle \text{s isos. } \Delta)$

 $\angle BQC = 180^{\circ} - 2(90^{\circ} - \alpha) = 2\alpha \ (\angle \text{ sum of } \Delta)$

 $\angle BAC = \alpha \ (\angle \text{ at centre twice } \angle \text{ at } \bigcirc^{\text{ce}})$

 $\therefore \angle BAD = \angle BAC$

BA is the \angle bisector of $\angle CAD$

Also, $\angle CPD = 2\alpha = \angle CQD = \angle CAD$ (proved)

 $\therefore C, Q, A, P, D$ are concyclic

(converse, \angle s in the same seg.)

Produce AC to E and AD to F.

Let $\angle APD = 2\theta$, $\angle AQC = 2\beta$

AP = PD (radii of circle C_1)

Let $\angle DAP = \angle ADP = 90^{\circ} - \theta$ (base \angle s isos. Δ)

similarly AQ = CQ (radii of C_2)

 $\angle QAC = \angle QCA = 90^{\circ} - \beta$ (base \angle s isos. Δ)

 $\angle ECB = \angle ACP$ (vert. opp. \angle s)

= $\angle ADP$ = 90° – $\theta(\angle s$ in the same seg.)

 $\angle BCD = \angle DAP = 90^{\circ} - \theta$ (ext. \angle , cyclic quad.)

 $\therefore \angle ECB = \angle BCD$

BC is the exterior angle bisector of $\angle ACD$.

 $\angle FDB = \angle ADQ$ (vert. opp. \angle s)

 $= \angle ACQ$ (\angle s in the same segment)

 $=90^{\circ} - \beta$ (proved)

 $\angle BDC = \angle CAQ = 90^{\circ} - \beta$ (ext. \angle , cyclic quad.)

 $\therefore \angle FDB = \angle BDC$

BD is the exterior angle bisector of $\angle ADC$.

 $\therefore B$ is the excentre of $\triangle ACD$.

Let P and Q be the centres of circles C_1 and C_2 intersecting at two distinct point A and B. If BP is extended to meet C_2 at C and BQ is extended to meet C_1 at D, prove that B is the excentre of ΔACD .

Proof: Join *PD* and *QC*. Let $\angle BAD = \alpha$

reflex $\angle BPD = 2\alpha$ (\angle at centre twice \angle at \odot^{ce})

 $\angle BPD = 360^{\circ} - 2\alpha \ (\angle s \text{ at a point})$

PD = PB (radii of circle C_1)

 $\angle PBD$ =[180°-(360°-2 α)]÷2= α -90° (\angle sum of Δ)

QB = QC (radii of circle C_2)

 $\angle QBC = \angle QCB = \alpha - 90^{\circ}$ (base \angle s isos. Δ)

 $\angle BQC = 180^{\circ} - 2(\alpha - 90^{\circ}) = 360^{\circ} - 2\alpha \ (\angle \text{ sum of } \Delta)$

 $\angle BAC = 180^{\circ} - \alpha \ (\angle \text{ at centre twice } \angle \text{ at } \bigcirc^{\text{ce}})$

Produce *DA* to *E*.

 $\angle BAE = 180^{\circ} - \alpha$ (adj. \angle s on st. line)

 $\therefore \angle BAE = \angle BAC$

BA is the exterior \angle bisector of $\angle CAD$.

 $\angle CAD = \alpha - \angle BAC = 2\alpha - 180^{\circ}$

 $\angle CPD = 180^{\circ} - \angle BPD = 2\alpha - 180^{\circ}$ (adj. \angle s on st. line)

 $\angle CQD = 180^{\circ} - \angle BQC = 2\alpha - 180^{\circ}$ (adj. \angle s on st. line)

 \therefore $\angle CPD = \angle CQD = \angle CAD$

 \therefore C, Q, A, P, D are concyclic

(converse, ∠s in the same segment)

CQ = AQ (radii of circle C_2)

 $\angle CQD = \angle ADQ$ (eq. chords eq. \angle s)

 $\therefore BD$ bisects $\angle ADC$.

B is the excentre of $\triangle ACD$.

