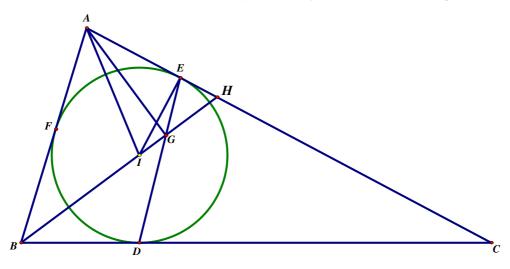
Created by Francis Hung



In the figure, the incircle with centre I touches the triangle ABC at D, E and F. BI is produced to meet AC at H. DE intersects BH at G. To prove $AG \perp BH$.

Let
$$\angle A = 2x$$
, $\angle B = 2y$, $\angle C = 2z$.

$$2x + 2y + 2z = 180^{\circ} (\angle s \text{ sum of } \Delta) \Rightarrow x + y + z = 90^{\circ} \cdots (1)$$

 $\angle IAH = x$, $\angle IBD = y$ (by the definition of incentre, IA bisects $\angle A$, IB bisects $\angle B$)

CD = CE (tangent from ext. point)

$$\angle DCE = \angle ECD = (180^{\circ} - 2z) \div 2 = 90^{\circ} - z \text{ (base } \angle \text{s. isos. } \Delta, \angle \text{ sum of } \Delta)$$

In
$$\triangle BDG$$
, $\angle BGD = \angle CDG - \angle DBG = 90^{\circ} - z - y = x$ (ext. \angle of \triangle , and by (1))

$$\angle EGH = \angle BGD = x \text{ (vert. opp. } \angle s)$$

$$\therefore$$
 $\angle IAH = x = \angle EGH \cdot \cdots \cdot (2)$

 \therefore A, E, G, I are concyclic (ext. \angle = int. opp. \angle)

 $\angle AEI = 90^{\circ} \text{ (tangent } \perp \text{ radius)}$

 $\angle AGI = \angle AEI = 90^{\circ}$ (\angle s in the same segment)

 $\therefore AG \perp BH$. The proof is completed.

Exercise: If *DE* intersects *BI* at *G* outside $\triangle ABC$, prove that $AG \perp BH$.

