Created by Francis Hung In the figure, the incircle with centre I touches the triangle ABC at D, E and F. BI is produced to meet AC at H. DE intersects BH at G. To prove $AG \perp BH$. Let $$\angle A = 2x$$, $\angle B = 2y$, $\angle C = 2z$. $$2x + 2y + 2z = 180^{\circ} (\angle s \text{ sum of } \Delta) \Rightarrow x + y + z = 90^{\circ} \cdots (1)$$ $\angle IAH = x$, $\angle IBD = y$ (by the definition of incentre, IA bisects $\angle A$, IB bisects $\angle B$) CD = CE (tangent from ext. point) $$\angle DCE = \angle ECD = (180^{\circ} - 2z) \div 2 = 90^{\circ} - z \text{ (base } \angle \text{s. isos. } \Delta, \angle \text{ sum of } \Delta)$$ In $$\triangle BDG$$, $\angle BGD = \angle CDG - \angle DBG = 90^{\circ} - z - y = x$ (ext. \angle of \triangle , and by (1)) $$\angle EGH = \angle BGD = x \text{ (vert. opp. } \angle s)$$ $$\therefore$$ $\angle IAH = x = \angle EGH \cdot \cdots \cdot (2)$ \therefore A, E, G, I are concyclic (ext. \angle = int. opp. \angle) $\angle AEI = 90^{\circ} \text{ (tangent } \perp \text{ radius)}$ $\angle AGI = \angle AEI = 90^{\circ}$ (\angle s in the same segment) $\therefore AG \perp BH$. The proof is completed. **Exercise**: If *DE* intersects *BI* at *G* outside $\triangle ABC$, prove that $AG \perp BH$.