Created by Francis Hung

The 3 angle bisectors of a triangle are concurrent at a point called the **inscribed centre**.

Let AI, BI, CI be the angle bisectors.

The **theorem** says that *AI*, *BI* and *CI* meet at *I*.

To prove this **theorem**, suppose the **angle bisectors** BI and CI intersect at I. Join AI. Try to show that AI is an angle bisector.

From *I*, draw $IP \perp BC$, $IQ \perp AC$, $IR \perp AB$

,	-, £	
$\angle ICP = \angle ICQ$		(angle bisector)
$\angle IPC = \angle IQC = 90^{\circ}$		(construction)
IC = IC		(common side)
$\therefore \Delta IPC \cong \Delta IQC$		(A.A.S.)
$\angle IBP = \angle IBR$		(angle bisector)
$\angle IPB = \angle IRB = 90^\circ$		(construction)
IB = IB		(common side)
$\therefore \Delta IBP \cong \Delta IBR$		(A.A.S.)
IQ = IP = IR		(corr. sides of $\cong \Delta s$)
$\angle IQA = \angle IRA = 90^{\circ}$		(construction)
$\Lambda I = \Lambda I$		(common side)

(common side) AI = AI $\therefore \Delta IRA \cong \Delta IQA$ (R.H.S.) $\therefore \angle IAR = \angle IAQ$ $(corr. \angle s \cong \Delta s)$ \therefore AI is an angle bisector. This proves the theorem.

According to this theorem, we can draw a circle with Ias the centre, IP = IQ = IR as the radius. The circle is called the inscribed circle or incircle in short. The centre is called the **inscribed centre** or **incentre** in short.

The radius is insribed radius or inradius in short.

We can find the radius (r) of the inscribed circle in terms of the sides of triangle ABC.

Area of ABC = Area of IBC + Area of IAC + Area of IAB

By **Heron's Formula**,
$$s = \frac{1}{2}(a+b+c)$$
, the area $= \sqrt{s(s-a)(s-b)(s-c)}$

$$\sqrt{s(s-a)(s-b)(s-c)} = \frac{1}{2}ar + \frac{1}{2}br + \frac{1}{2}cr$$

$$\sqrt{s(s-a)(s-b)(s-c)} = sr.$$

$$r = \sqrt{\frac{(s-a)(s-b)(s-c)}{s}}$$