The **perpendicular bisector** of a line segment.

Given a line segment AB.

A line segment EF intersects AB at M.

If (1) $EF \perp AB$ and (2) AM = MB;

then EF is called the perpendicular bisector of AB.

are perpendicular bisectors of BC, CA and AB respectively. The theorem says that *PD*, *PE* and *PF* meet at a point *P*.

Proof: Let PE and PF be the two perpendicular bisectors of AC and AB respectively which intersect at P.

concurrent at a point P called the **circumcentre**. PD, PE and PF

Through P draw a line segment PD perpendicular to BC.

Try to show that PD is a perpendicular bisector of BC.

Join AP, BP and CP.

$$PE = PE$$
(common sides) $AE = EC$ (PE is a \perp bisector) $\angle AEP = \angle CEP = 90^{\circ}$ (PE is a \perp bisector) $\triangle APE \cong \triangle CPE$ (S.A.S.)

 $\Delta BDP \cong \Delta CDP$ (R.H.S.)

 $\therefore BD = CD$ (corr. sides, $\cong \Delta s$)

 \therefore PD is a perpendicular bisector of BC.

The theorem is proved.

$$\therefore AP = BP = CP$$

We can use P as centre and AP = BP = CP as radius to draw a circle which passes through the triangle ABC. The circle is called the circumscribed circle (or circum-circle in short form). The centre is called the circumscribed centre (or circum-centre in short) and the radius is called the circum-radius.

Let
$$\angle PAE = \angle PCE = x$$
, $\angle PAF = \angle PBF = y$, $\angle PBD = \angle PCD = z$ (corr. $\angle s$, $\cong \Delta s$)
 $2x + 2y + 2z = 180^{\circ}$ (\angle sum of ΔABC)
 $180^{\circ} - 2z = 2(x + y)$
 $\angle BPC = 180^{\circ} - 2z$ (\angle sum of ΔBPC)
 $= 2(x + y)$
 $= 2 \angle A$

$$\therefore \Delta BDP \cong \Delta CDP$$

$$\therefore \angle BPD = \angle CPD = \angle A$$

Let the circumscribed radius be R.

In
$$\triangle BPD$$
, $\frac{BD}{BP} = \sin \angle BPD$

$$\Rightarrow \frac{\frac{a}{2}}{R} = \sin A$$

$$\Rightarrow \frac{a}{\sin A} = 2R$$

In a similar manner we can prove that $\frac{b}{\sin B} = 2R$; $\frac{c}{\sin C} = 2R$.

Therefore, we have proved the **Sine formula** $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$;

where *R* is the radius of the circumscribed circle.

By Heron's formula the area of $\triangle ABC = \sqrt{s(s-a)(s-b)(s-c)}$

where $s = \frac{1}{2}(a + b + c)$ (Half of the perimeter of $\triangle ABC$).

$$\Rightarrow \sqrt{s(s-a)(s-b)(s-c)} = \frac{1}{2}ab\sin C$$

$$\Rightarrow \sqrt{s(s-a)(s-b)(s-c)} = \frac{1}{2}ab\frac{c}{2R}$$

$$\Rightarrow R = \frac{abc}{4\sqrt{s(s-a)(s-b)(s-c)}}$$

This is the formula of the radius in terms of the sides of triangle.

Method 2 (Coordinates)

Use analytic approach to prove that the $3 \perp$ bisectors of $\triangle ABC$ are concurrent at the circentre P. Define a rectangular coordinates system with BC lying on the x-axis.

Let the coordinates of B and C be (-b, 0) and C(b, 0) respectively.

$$:: OB = OC = b$$

 \therefore O is the mid-point of BC

x-axis \perp *y*-axis \Rightarrow *y*-axis is the \perp bisector of *BC*.

Let the coordinates of A be (a, h).

Let E and F be the mid-points of AC and AB respectively. Suppose the perpendicular bisector of AC cuts y-axis at P(0, p).

$$E = \left(\frac{a+b}{2}, \frac{h}{2}\right), F = \left(\frac{a-b}{2}, \frac{h}{2}\right)$$

 $:: PE \perp AC$

$$\therefore m_{PE} \times m_{AC} = \frac{\frac{h}{2} - p}{\frac{a+b}{2}} \times \frac{h}{a-b} = -1 \Rightarrow \frac{2\left(\frac{h}{2} - p\right)h}{(a+b)(a-b)} = -1$$

$$m_{PF} \times m_{AB} = \frac{\frac{h}{2} - p}{\frac{a - b}{2}} \times \frac{h}{a + b} = -1 \Rightarrow \frac{2\left(\frac{h}{2} - p\right)h}{(a - b)(a + b)} = -1$$

 \therefore The $PF \perp AB$

The $3 \perp$ bisectors of a triangle are concurrent at the circumcentre P.