Orthocentre

Created by Francis Hung

Last updated: 26 September 2021

The three altitudes of a triangle are concurrent at a point

called the "orthocentre". (Figure 1)

In $\triangle ABC$, $AD \bot BC$, $BE \bot AC$, $CF \bot AB$.

Then AD, BE, CF are concurrent at H.

Proof: Let the **altitudes** *BE* and *CF* meet at *H*.

Join AH and produce it to meet BC at D.

Try **to show** that $AD \perp BC$. (Figure 2)

 $\angle AFH + \angle AEH = 180^{\circ}$

A, F, H, E are concyclic. (opp. \angle supp.)

 $\angle BFC = \angle BEC$

B, C, E, F are concyclic. (converse, \angle s in the same seg.)

Figure 2

In **Figure 3**, let $\angle BAD = x$, $\angle AHF = y$.

$$\angle FEH = x$$
 (\angle s in the same seg.)

$$\angle BCF = \angle BEF$$
 (\angle s in the same seg.)

= x

$$\angle CHD = y$$
 (vert. opp. $\angle s$.)

In
$$\triangle AFH$$
, $x + y = 90^{\circ}$ (\angle sum of \triangle)

In
$$\triangle CDH$$
, $x + y + \angle CDH = 180^{\circ} (\angle \text{ sum of } \Delta)$

$$\therefore \angle CDH = 90^{\circ}$$

The theorem is proved.

Figure 3

Vector method

Let O be the reference point.

Suppose the altitudes *BE* and *CF* intersect at *H*.

Let the position vectors of A, B, C, H be \mathbf{a} , \mathbf{b} , \mathbf{c} , \mathbf{h} .

Join AH. We are going to show that $AH \cdot BC = 0$

$$\overrightarrow{BH} = \mathbf{h} - \mathbf{b}, \ \overrightarrow{CH} = \mathbf{h} - \mathbf{c}$$

 $\therefore BH \perp AC$ and $CH \perp AB$

$$\therefore$$
 $(\mathbf{h} - \mathbf{b}) \cdot (\mathbf{c} - \mathbf{a}) = 0$ and $(\mathbf{h} - \mathbf{c}) \cdot (\mathbf{b} - \mathbf{a}) = 0$

$$\mathbf{h} \cdot \mathbf{c} - \mathbf{b} \cdot \mathbf{c} - \mathbf{h} \cdot \mathbf{a} + \mathbf{a} \cdot \mathbf{b} = 0 \cdot \cdots \cdot (1)$$

$$\mathbf{h} \cdot \mathbf{b} - \mathbf{c} \cdot \mathbf{b} - \mathbf{h} \cdot \mathbf{a} + \mathbf{a} \cdot \mathbf{c} = 0 \cdot \dots \cdot (2)$$

$$(1) - (2): \mathbf{h} \cdot \mathbf{c} - \mathbf{h} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{b} - \mathbf{a} \cdot \mathbf{c} = 0$$

$$(\mathbf{h} - \mathbf{a}) \cdot (\mathbf{c} - \mathbf{b}) = 0$$

$$\therefore \overrightarrow{AH} \cdot \overrightarrow{BC} = 0$$

 $AH \perp BC$

i.e. The 3 altitudes are concurrent at a point H.

Method 3 (The following method use the fact that the 3 perpendicular bisectors of a triangle are concurrent at the circumcentre)

(Reference: New Trend Mathematics S.3B, Chung Tai Educational Press, 2003, p.167-168)

Construct three straight lines ZAY, ZBX and YCX Z such that ZAY // BC, ZBX // AC and YCX // AB.

In $\triangle ABC$ and $\triangle XCB$,

$$\therefore$$
 AC // BX and AB // CX (by construction)

$$\therefore \angle ACB = \angle XBC$$
 (alt. $\angle s, AC // BX$)

$$\angle ABC = \angle XCB$$
 (alt. \angle s, $AB // CX$)
 $BC = CB$ (common side)

$$BC = CB$$

$$\therefore \Delta ABC \cong \Delta XCB \tag{A.S.A.}$$

$$\therefore$$
 $CA = BX$ (corr. sides, $\cong \Delta s$)

In ΔZAB and ΔCBA .

$$\therefore$$
 ZA // BC and ZB // AC (by construction)

$$\therefore \angle ZAB = \angle CBA \qquad (alt. \angle s, ZA // BC)$$

$$\angle ZBA = \angle CAB$$
 (alt. \angle s, $ZB // AC$)
 $AB = BA$ (common side)

$$\therefore \Delta ZAB \cong \Delta CBA \tag{A.S.A.}$$

$$\therefore$$
 $ZB = CA$ (corr. sides, $\cong \Delta s$)

ZB = BX:.

$$\therefore AC // ZX$$
 (by construction)

$$\therefore \angle AEB + \angle EBZ = 180^{\circ} \quad (int. \angle s, AC // ZX)$$

$$90^{\circ} + \angle EBZ = 180^{\circ}$$

$$\angle EBZ = 90^{\circ}$$

 \therefore BE is the perpendicular bisector of ZX.

Similarly, AD is the perpendicular bisector of ZY.

CF is the perpendicular bisector of YX.

In ΔXYZ ,

- : three perpendicular bisectors intersect at a point. (proved)
- \therefore AD, BE and CF intersect at a point.

Method 4 (Coordinates)

Prove that the 3 altitudes are concurrent at the orthocentre H.

Define a rectangular coordinates system with BC lying on x-axis, $OA \perp x$ -axis. Let the coordinates of A, B and C be (0, a), (b, 0) and (c, 0).

x-axis \perp *y*-axis \Rightarrow $OA \perp BC \Rightarrow OA$ is an altitude. Suppose another altitude *BD* intersects OA at H. i.e. $BD \perp AC$ Let the coordinates of H be (0, h).

$$m_{BD} \times m_{AC} = -1$$

$$\frac{h - 0}{0 - b} \times \frac{a - 0}{0 - c} = -1 \implies \frac{ah}{bc} = -1$$

$$m_{CH} \times m_{AB} = \frac{h - 0}{0 - c} \times \frac{a - 0}{0 - b} = \frac{ah}{bc} = -1$$

 $\therefore CH \perp AB$

 \therefore The 3 altitudes are concurrent at the orthocentre H(0, h).