In $\triangle ABC$, E is a point on side AB and D is a point on side AC such that $\angle ABD = 20^{\circ}$,

 $\angle DBC = 60^{\circ}$, $\angle ACE = 30^{\circ}$ and $\angle ECB = 50^{\circ}$. Find $\angle EDB$.

Solution:

$$\angle BEC = 50^{\circ}$$
 (\angle sum of Δ)

$$\angle BDC = 40^{\circ}$$
 (\angle sum of Δ)

Let *P* be a point on *AC* s.t. $BP \perp CE$. Draw $BPQ \perp CE$.

$$\therefore BC = BE$$
 (sides opp. eq. \angle s)

 \therefore BPQ is the \perp bisector of CE.

$$\Delta BPC \cong \Delta BPE \tag{S.A.S.}$$

$$\angle EBP = 40^{\circ} \Rightarrow \angle DBP = 20^{\circ}$$

$$\angle BPC = \angle BPE = 180^{\circ} - \angle PBC - \angle PCB$$
 (\angle sum of Δ)
= $180^{\circ} - 40^{\circ} - 80^{\circ} = 60^{\circ}$

$$\angle DPQ = 60^{\circ}$$
 (vert. opp. \angle s)

$$\angle DPE = 60^{\circ}$$
 (adj. \angle s on st. lines.)

 \therefore DP is the exterior angle bisector of $\angle QPE$

Also BD is the interior angle bisector of $\angle PBE$

- $\therefore D$ is the centre of the escribed circle *BEP*.
- $\therefore DE$ is the exterior angle bisector of $\angle AEP$.

$$\angle AED = \frac{1}{2} \angle AEP = \frac{1}{2} \angle BCP$$
 (adj. \angle s on st. line.)
$$= \frac{1}{2} (180^{\circ} - 50^{\circ} - 30^{\circ}) = 50^{\circ}$$

$$\angle EDB = 50^{\circ} - 20^{\circ} = 30^{\circ}$$
 (ext. \angle on $\triangle BDE$)

