In $\triangle ABC$, E is a point on side AB and D is a point on side AC such that $\angle ABD = 20^{\circ}$, $\angle DBC = 60^{\circ}$, $\angle ACE = 30^{\circ}$ and $\angle ECB = 50^{\circ}$. Find $\angle EDB$. **Solution:** $$\angle BEC = 50^{\circ}$$ (\angle sum of Δ) $$\angle BDC = 40^{\circ}$$ (\angle sum of Δ) Let *P* be a point on *AC* s.t. $BP \perp CE$. Draw $BPQ \perp CE$. $$\therefore BC = BE$$ (sides opp. eq. \angle s) \therefore BPQ is the \perp bisector of CE. $$\Delta BPC \cong \Delta BPE \tag{S.A.S.}$$ $$\angle EBP = 40^{\circ} \Rightarrow \angle DBP = 20^{\circ}$$ $$\angle BPC = \angle BPE = 180^{\circ} - \angle PBC - \angle PCB$$ (\angle sum of Δ) = $180^{\circ} - 40^{\circ} - 80^{\circ} = 60^{\circ}$ $$\angle DPQ = 60^{\circ}$$ (vert. opp. \angle s) $$\angle DPE = 60^{\circ}$$ (adj. \angle s on st. lines.) \therefore DP is the exterior angle bisector of $\angle QPE$ Also BD is the interior angle bisector of $\angle PBE$ - $\therefore D$ is the centre of the escribed circle *BEP*. - $\therefore DE$ is the exterior angle bisector of $\angle AEP$. $$\angle AED = \frac{1}{2} \angle AEP = \frac{1}{2} \angle BCP$$ (adj. \angle s on st. line.) $$= \frac{1}{2} (180^{\circ} - 50^{\circ} - 30^{\circ}) = 50^{\circ}$$ $$\angle EDB = 50^{\circ} - 20^{\circ} = 30^{\circ}$$ (ext. \angle on $\triangle BDE$)