Created by Francis Hung

Given $\triangle ABC$. If the two angle bisectors are equal in length, then it is isosceles.

Method 1

Let BC = a, AC = b, AB = c,

CD = t =angle bisector of $\angle BCA$.

Draw a circle passes through $\triangle ABC$.

Produce CD at E on the circle.

Let DE = y

 $\therefore \Delta BDC \sim \Delta ADE$ (equiangular)

$$\therefore ty = (c - x)x \quad \cdots \quad (1)$$

 $\angle BCD = \angle ECA = \theta$ (given CD = angle bisector)

 $\angle CBD = \angle CEA \ (\angle \text{ in the same segment})$

 $\therefore \Delta CDB \sim \Delta CEA$ (equiangular)

$$\therefore \frac{a}{t+y} = \frac{t}{b}$$

$$ab = t^2 + ty$$

$$t^2 = ab - ty$$

$$= ab - (c - x)x \quad \text{by } (1) \quad \cdots (2)$$

Draw BF // CD, produce AC to meet at F.

$$\angle CBF = \angle BCD = \theta$$
 (alt. \angle s, $BF // CD$)

$$\angle BFC = \angle DCA = \theta$$
 (corr. \angle s, $BF // CD$)

 $\therefore \Delta CBF$ is isosceles.

$$\therefore CF = CB = a$$

 $\Delta CAD \sim \Delta FAB$ (equiangular)

$$\therefore \frac{b}{a+b} = \frac{x}{c}$$

$$x = \frac{bc}{a+b} \quad \dots (3)$$

Sub. (3) into (2)

$$t^{2} = ab - \left(c - \frac{bc}{a+b}\right) \frac{bc}{a+b} = \frac{(a+b+c)(a+b-c)ab}{(a+b)^{2}}$$

Let u = another angle bisector such that t = u

Similarly
$$u^2 = \frac{(a+b+c)(a-b+c)ac}{(a+c)^2}$$

$$t = u \Rightarrow [a^3 + a^2(b+c) + 3abc + bc(b+c)](b-c) = 0$$

b - c = 0 (: the other factor is positive)

$$b = c$$

The triangle is isosceles.

A

Method 2

In the figure, let CD, BE be the angle bisectors and CD = BE.

Let $\angle CBE = \angle ABE = \alpha$, $\angle BCD = \angle ACD = \beta$

Suppose *CD* intersects *BE* at *X*. Join *AX* .

: the three angle bisectors are concurrent

 $\therefore AX$ is the angle bisector.

Let
$$\angle BAX = \angle CAX = \gamma$$
, $\angle ADC = \theta$

Copy θ on BE so that BF = AD and $\angle EBF = \theta$

Join EF

Then $\triangle EBF \cong \triangle CAD$ (S.A.S. by construction) \cdots (1)

Draw FY bisects $\angle BFE$

$$\begin{cases} \angle YFE = \angle XAC = \gamma \\ \angle FEY = \angle ACX = \beta \quad \text{(by construction)} \\ AC = FE \end{cases}$$

$$\therefore \Delta FEY \cong \Delta ACX (A.S.A.)$$

$$\therefore$$
 FY = AX (corr. sides of $\cong \Delta$ s) $\cdots (2)$

$$\angle BFE = \angle BAE$$
 (by (1) $\triangle EBF \cong \triangle CAD$)

 \therefore F, A, E, B are concyclic (converse, \angle s in the same segment)

$$\angle FAB = \angle FEB$$
 (\angle s in the same segment)
= \angle ACD (by (1), \Delta EBF \approx \Delta CAD)
= \beta \cdots \cdots \cdots \cdots

$$\therefore \angle FAX = \beta + \gamma \cdots \cdots (3)$$

$$\angle FYE = \angle FBY + \angle BFY \text{ (ext. } \angle \text{ of } \triangle BFY)$$

= $\theta + \gamma$ (4)

By considering the $\triangle AXD$ and $\triangle AXC$

$$\beta + \gamma + \theta + \gamma = 180^{\circ} \Rightarrow \beta + \theta + 2\gamma = 180^{\circ}$$
(5)

$$(3) + (4) \Rightarrow \angle FAX + \angle FYE = 180^{\circ} \text{ (by (5))}$$

$$\therefore A, X, Y, F$$
 are concyclic (opp. \angle s supp.) $\cdots \cdots (6)$

Join AY. Given AX = FY (by (2))

$$\angle FAY = \angle AYX$$
 (equal arcs, equal angles)

$$\therefore AF // YX$$
 (alt. \angle s equal)

$$\angle FAB = \angle ABE \text{ (alt. } \angle AF // YX)$$

$$= \alpha$$

By (*),
$$\beta = \alpha$$

$$\therefore \angle ABC = \angle ACB$$

 $\triangle ABC$ is isosceles.

