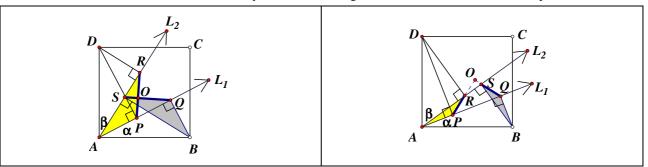
Equal and perpendicular segments in a square

Reference: https://www.cut-the-knot.org/m/Geometry/KvantM1202.shtml
Created by Mr. Francis Hung on 21/06/2018. Last updated: 03/09/2021



Given a square ABCD. Two rays L_1 and L_2 are drawn through A inside the square.

P, Q, R and S are the feet of perpendiculars from D and B onto L_1 and L_2 respectively.

Prove that PR = QS and $PR \perp QS$.

Proof: Let $\angle BAQ = \alpha$, $\angle DAR = \beta$

$$\angle DAQ = 90^{\circ} - \alpha$$
, $\angle BAS = 90^{\circ} - \beta$

$$\angle ADP = 180^{\circ} - \angle DAP - \angle DAP = 180^{\circ} - 90^{\circ} - (90^{\circ} - \alpha) = \alpha \ (\angle \text{ sum of } \Delta)$$

$$\angle ABS = 180^{\circ} - \angle BSA - \angle BAS = 180^{\circ} - 90^{\circ} - (90^{\circ} - \beta) = \beta \ (\angle \text{ sum of } \Delta)$$

$$AB = AD$$
 (sides of a square)

$$\angle AQB = \angle APD = \angle ASB = \angle ARD = 90^{\circ}$$

$$\Delta AOB \cong \Delta DPA, \ \Delta ASB \cong \Delta DRA$$
 (A.A.S.)

$$BQ = AP$$
, $BS = AR$ (corr. sides, $\cong \Delta s$)

$$\angle PAR = 90^{\circ} - \alpha - \beta$$

$$\angle ABS = 180^{\circ} - 90^{\circ} - (90^{\circ} - \beta) = \beta \qquad (\angle \text{ sum of } \Delta)$$

$$\angle ABQ = 90^{\circ} - \alpha$$
 ($\angle \text{sum of } \Delta$)

$$\angle QBS = 90^{\circ} - \alpha - \beta$$

$$\therefore \angle PAR = \angle OBS$$

$$\Delta QBS \cong \Delta PAR$$
 (A.A.S.)

$$PR = QS$$
 (corr. sides, $\cong \Delta s$)

$$\angle APR = \angle BQS$$
 (corr. $\angle s, \cong \Delta s$)

$$\angle APS + \angle SPR = \angle BQP + \angle PQS$$

$$90^{\circ} + \angle SPR = 90^{\circ} + \angle POS$$

$$\angle SPR = \angle PQS$$

Suppose PR and QS intersect at O.

In
$$\triangle POQ$$
, $\angle PQO + \angle POQ = \angle APO$ (ext. \angle of \triangle)

$$\angle POO = 90^{\circ} + \angle SPR - \angle POO = 90^{\circ}$$

$$\therefore PR \perp QS$$

The proof is complete.