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Given a triangle ABC. Equilateral triangles ABE, ACD, BCF with centres H, G, K 

respectively are drawn outwards as shown. To prove HKG is an equilateral triangle. 

Method 1 

Let BC = a, AC = b, AB = c 
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∠BAH = 30° = ∠CAG 

∠HAG = ∠A + 60° 

By cosine rule on ∆AHG 
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Cosine rule on ∆ABC: a2 = b2 + c2 – 2bc cos A 

Sine rule: R
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This is a symmetric function 
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∴ HGK is an equilateral triangle 
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Method 2 

Let P be the mirror image of the reflection of 

A about HG. 

Then ∆AHG ≅ ∆PHG (S.S.S.) 

HA = HP  (corr. sides ≅ ∆s) 

∵ H = centre of ∆EAB 

∴ HA = HB = HE 

We can draw a circle with H as centre to pass 

through EAPB. 

∠APB + ∠AEB = 180° (opp. ∠s cyclic quad.) 

∠APB = 180° – 60° = 120° 

In a similar manner, ∠APC = 120° 

∠BPC=360°– 120° – 120° =120° (∠s at a pt.) 

F,B,P,C are concyclic (opp. ∠s supp.) 

KB = KC = KF 

K is the centre of the circle FBPC. 

KP = KB = KC 

∆BHK ≅ ∆PHK, ∆CGK ≅ ∆PGK (S.S.S.) 

Let θ1,θ2,φ1,φ2,α1,α2,λ1,λ2 be as shown. 

θ1 = θ2, φ1 = φ2, α1 = α2, λ1 = λ2 corr. ∠s ≅ ∆s 

∵ ∠BKC= 120°, ∠AGC= 120° 

 

∴ θ1 + θ2 + φ1 + φ2 = 120°, α1 + α2 + λ1+ λ2 = 120° 

2(θ2+φ1) = 120°, 2(α2+λ1) = 120° 

θ2 + φ1 = 60°, α2 + λ1 = 60° 

∠HKG = 60°, ∠HGK = 60° 

∠KHG = 180° – 60° – 60° = 60° (∠ sum of ∆) 

∆HKG is an equilateral ∆ 
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