Napoleon triangle

Created by Francis Hung on 20161029

Last updated: 22 September 2021

Given a triangle ABC. Equilateral triangles ABE, ACD, BCF with centres H, G, K E respectively are drawn outwards as shown. To prove HKG is an equilateral triangle.

Let
$$BC = a$$
, $AC = b$, $AB = c$
 $AH = \frac{2}{3}$ median of $\triangle ABE$

$$= \frac{2}{3} \times \frac{\sqrt{3}}{2} c = \frac{c}{\sqrt{3}}$$

$$AG = \frac{b}{\sqrt{3}}$$

$$\angle BAH = 30^{\circ} = \angle CAG$$

$$\angle HAG = \angle A + 60^{\circ}$$

By cosine rule on $\triangle AHG$

$$HG^{2} = \left(\frac{b}{\sqrt{3}}\right)^{2} + \left(\frac{c}{\sqrt{3}}\right)^{2} - \frac{2bc}{\sqrt{3}}\cos(A + 60^{\circ})$$

$$HG^{2} = \frac{1}{3} \left[b^{2} + c^{2} - 2bc \left(\cos A \cdot \frac{1}{2} - \sin A \cdot \frac{\sqrt{3}}{2} \right) \right]$$

$$HG^2 = \frac{1}{3} (b^2 + c^2 - bc \cos A + \sqrt{3}bc \sin A)$$

Cosine rule on $\triangle ABC$: $a^2 = b^2 + c^2 - 2bc \cos A$

Sine rule:
$$\frac{a}{\sin A} = 2R$$

$$HG^{2} = \frac{1}{3} \left(b^{2} + c^{2} + \frac{a^{2}}{2} - \frac{b^{2}}{2} - \frac{c^{2}}{2} + \frac{\sqrt{3}abc}{2R} \right)$$

$$= \frac{1}{3} \left(\frac{a^{2} + b^{2} + c^{2}}{2} + \frac{\sqrt{3}abc}{2R} \right)$$

$$= \frac{1}{6} \left(a^{2} + b^{2} + c^{2} + \frac{\sqrt{3}abc}{R} \right)$$

This is a symmetric function

Similarly
$$GK^2 = HK^2 = \frac{1}{6} \left(a^2 + b^2 + c^2 + \frac{\sqrt{3}abc}{R} \right)$$

:. HGK is an equilateral triangle

Napoleon triangle Created by Francis Hung

Method 2

Let P be the mirror image of the reflection of

A about HG.

Then $\triangle AHG \cong \triangle PHG$ (S.S.S.)

HA = HP (corr. sides $\cong \Delta s$)

 \therefore *H* = centre of $\triangle EAB$

$$\therefore HA = HB = HE$$

We can draw a circle with H as centre to pass through EAPB.

$$\angle APB + \angle AEB = 180^{\circ}$$
 (opp. \angle s cyclic quad.)

$$\angle APB = 180^{\circ} - 60^{\circ} = 120^{\circ}$$

In a similar manner, $\angle APC = 120^{\circ}$

$$\angle BPC = 360^{\circ} - 120^{\circ} - 120^{\circ} = 120^{\circ} (\angle s \text{ at a pt.})$$

F,B,P,C are concyclic (opp. \angle s supp.)

$$KB = KC = KF$$

K is the centre of the circle *FBPC*.

$$KP = KB = KC$$

$$\Delta BHK \cong \Delta PHK, \Delta CGK \cong \Delta PGK$$
(S.S.S.)

Let $\theta_1, \theta_2, \phi_1, \phi_2, \alpha_1, \alpha_2, \lambda_1, \lambda_2$ be as shown.

$$\theta_1 = \theta_2$$
, $\phi_1 = \phi_2$, $\alpha_1 = \alpha_2$, $\lambda_1 = \lambda_2$ corr. $\angle s \cong \Delta s$

$$\theta_1 + \theta_2 + \phi_1 + \phi_2 = 120^{\circ}, \alpha_1 + \alpha_2 + \lambda_1 + \lambda_2 = 120^{\circ}$$

$$2(\theta_2 + \phi_1) = 120^{\circ}, 2(\alpha_2 + \lambda_1) = 120^{\circ}$$

$$\theta_2 + \phi_1 = 60^{\circ}, \, \alpha_2 + \lambda_1 = 60^{\circ}$$

$$\angle HKG = 60^{\circ}, \angle HGK = 60^{\circ}$$

$$\angle KHG = 180^{\circ} - 60^{\circ} - 60^{\circ} = 60^{\circ} \ (\angle \text{ sum of } \Delta)$$

 ΔHKG is an equilateral Δ

