Triangle Problem 1 Created by Francis Hung

In the figure, H is the orthocentre of the triangle ABC. Given that AH = BC. Prove that $\angle BAC = 45^{\circ}$

Let AD, BE, CF be the altitudes.

2

Let *O* be the circumcentre of the triangle. Let *BT* be the diameter.

Let O be the chedine of the triangle. Let DI be the diameter.	
$\angle BCT = 90^{\circ}$	(∠ in semi-circle)
$\angle ADC = 90^{\circ}$	(AD = altitude)
∴ <i>AH</i> // <i>CT</i>	
$\angle BAT = 90^{\circ}$	(∠ in semi-circle)
$\angle BFC = 90^{\circ}$	(CF = altitude)
∴ <i>AT</i> // <i>CH</i>	
AHCT is a parallelogram.	
AH = CT	(opp. sides of //-gram)
BC = AH	(given)
$\therefore BC = CT \text{ and } \angle BCT = 90^{\circ}$	
$\therefore \angle BTC = 45^{\circ}$	$(\angle \text{ sum of isos. } \Delta)$
$\therefore \angle BAC = 45^{\circ}$	$(\angle s \text{ in the same segment})$
Method 2	
AH = BC	(given)
$\angle AEH = 90^{\circ} = \angle BEC$	$(\because BE \text{ is an altitude})$
Let $\angle BHD = \theta$, then $\angle AHE = \theta$	(vert. opp. ∠s)
In $\triangle AEH$, $\angle EAH = 90^{\circ} - \theta$	$(\angle \operatorname{sum of } \Delta)$
In $\triangle BDH$, $\angle DBH = 90^{\circ} - \theta = \angle EAH$	$(\angle \operatorname{sum of } \Delta)$
$\therefore \angle BHD = \angle CAD = \theta$	
$\angle CAD = \angle CBE = 90^{\circ} - \theta$	
$\Delta BCE \cong \Delta AHE$	(A.A.S.)
BE = AE	(corr. sides, $\cong \Delta s$)
$\triangle ABE$ is a right-angled isosceles triangle	
$\angle ABE = \angle BAE$	(corr. $\angle s$, $\cong \Delta s$)
$=\frac{180^{\circ}-90^{\circ}}{2}=45^{\circ}$	$(\angle \operatorname{sum of } \Delta)$
· J	