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In AABC, squares ABPQ, ACRS are drawn outwards as shown. The lines BR, CP intersect at H.

Prove that AHL BC.

Let AD be the altitudeL BC
Produce DA to G so that AG = BC.
Let ~SAG=x, £CAD =y.

Then x +90° +y = 180°

=Yy=90°-X
ZACD =90° -y
=X

.. 2CAG=90°+x= ~RCB
RC=AC

BC =AG

~.AAGC = ACBR

In a similar manner, AAGB = ABCP
. ZACG=,CRB=qa

Suppose CG intersects BR at E.

ZECR=90°—q
~. ZCER=180° - (90° — o) — ot
=90°

Suppose CP intersects BG at F.

In a similar manner ~ BFP = 90°
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(D lies on BC).

(adj. Zs on st. line)

(~« sum of AACD)

(sides of a square)
(construction)
(S.A.S.)

(S.A.S.)

(corr. £, = As)

(~« sum of ARCE)

..GD, BE, CF are the altitudes of AGBC.

-+ The 3 altitudes of AGBC intersect at one point: orthocentre H.

..H lies in GAD
= AH1 BC.
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Second problem of a triangle Created by Mr. Francis Hung

Method 2 Introduce a rectangular coordinates system as shown.
Let the coordinates of A, B and C be (0, @), (b, 0) and (—c, 0) respectively.

P»- X

C(c,0) O B(b, 0)

Then the coordinates of P and R are (b + a, b) and (—c — a, ¢) respectively.
Suppose CP and BR intersect at H. Let the coordinates of H be (X, Y).

y b
ey =Mep = = = X+c)--- (1
" " X+Cc a+b+c y a+b+c( ) 2
y c c
= = =_ x—=hb)--- (2
Mo = Mee :>x—b ——c—a—bzz}y a+b+c( ) @)

(x+c)=-

a+b+c a+b+c
b(x +¢)=—c(x—Db)
bx + bc =-cx + bc
bx+cx=0
(b+c)x=0
X=0
- H(0,y)
i.e. AH L BC

(H=(): (x—b)
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