Theorem 1

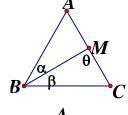
Given a $\triangle ABC$ with AB = AC. M is the mid-point of AC. $\angle ABM = \alpha$, $\angle CBM = \beta$, $\angle BMC = \theta$. Then

- (a) if AB = BC, then $\alpha = \beta$.
- (b) if AB > BC, then $\alpha < \beta$;
- (c) if AB < BC, then $\alpha > \beta$.
- (a) Given AB = BC.

 $\triangle ABC$ is an equilateral triangle

$$\Delta ABM \cong \Delta CBM$$
 (S.S.S.)

$$\alpha = \beta = 30^{\circ}$$
 (corr. sides, $\cong \Delta$ s)



(b) Given AB > BC.

Apply sine rule on $\triangle ABM$ and $\triangle BCM$.

$$\frac{AM}{\sin\alpha} = \frac{AB}{\sin(180^{\circ} - \theta)} \quad \cdots \qquad (1)$$

$$\frac{CM}{\sin\beta} = \frac{BC}{\sin\theta} \quad \cdots \quad (2)$$

Using the fact that AM = CM and $\sin(180^{\circ} - \theta) = \sin \theta$

(1) ÷ (2):
$$\frac{\sin \beta}{\sin \alpha} = \frac{AB}{BC}$$

$$\therefore AB > BC \therefore \sin \beta > \sin \alpha$$

$$\alpha < \beta$$

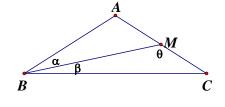
(c) Given AB < BC.

Using the same method as in (b), we have

$$\frac{\sin\beta}{\sin\alpha} = \frac{AB}{BC}$$

$$\therefore AB < BC \therefore \sin \beta < \sin \alpha$$

$$\alpha > \beta$$



Theorem 2 Given a $\triangle ABC$ with AB = AC. M is the mid-point of AC. G is the centroid of $\triangle ABC$.

The circumscribed circle BGC is drawn. Let AM = x = MC. Then

- (a) if AB = BC, then AC touches the circle at C, $\angle CBM = \alpha$ and AC = BC;
- (b) if AB > BC, then AC cuts the circle at P, $\angle PBM = \alpha$ and PA = PB + PC;
- (c) if AB < BC, then AC produced cuts the circle at P, $\angle PBM = \alpha$ and PA + PC = PB.
- (a) Given AB = BC.

 $\triangle ABC$ is an equilateral triangle

Clearly
$$AC = BC$$
.

Let *N* be the mid-point of *AB*.

$$\Delta ACN \cong \Delta BCN$$

(S.S.S.)

$$\angle ACN = \angle BCN = 30^{\circ}$$

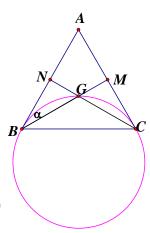
(corr. sides, $\cong \Delta s$)

By theorem 1 (a), $\angle CBM = 30^{\circ}$

$$\therefore \angle ACN = \angle CBM$$

 \therefore AC touches the circle at C

(converse, \angle in alt. seg.)



(b) Given AB > BC.

By theorem 1 (b), $\alpha < \beta$

We can find a point P between CM so that $\angle PBM = \alpha$.

 $\therefore AB = AC$ and G is the centroid

It is easy to show that BG = CG and $\angle ABG = \alpha = \angle ACG$

$$\therefore \angle PCG = \alpha = \angle PBG$$

 \therefore BCPG is a cyclic quadrilateral (converse, \angle s in the same seg.)

 \therefore *P* lies on the circle.

Apply sine law on $\triangle ABM$ and $\triangle BPM$.

$$\frac{AM}{AB} = \frac{\sin \alpha}{\sin(180^{\circ} - \theta)} \cdots (3)$$

$$\frac{PM}{BP} = \frac{\sin \alpha}{\sin \theta} \quad \cdots \quad (4)$$

Using the fact that $\sin(180^{\circ} - \theta) = \sin \theta$ and AM = x = MC, AB = 2x.

(3) = (4):
$$\frac{AM}{AB} = \frac{PM}{BP} = \frac{1}{2}$$

$$PM = MC - PC = x - PC$$

$$PA = PM + AM = 2x - PC$$

$$PB = 2PM = 2x - 2PC$$

$$PA = 2x - PC = 2x - 2PC + PC = PB + PC$$

(c) Given AB < BC.

By theorem 1 (c), $\alpha > \beta$

We can find a point P on MC produced so that $\angle PBM = \alpha$.

 $\therefore AB = AC$ and G is the centroid

It is easy to show that BG = CG and

$$\angle ABG = \alpha = \angle ACG$$

$$\therefore \angle ACG = \alpha = \angle PBG$$

:. BPCG is a cyclic quadrilateral

(ext.
$$\angle$$
 = int. opp. \angle)

 \therefore P lies on the circle.

Apply sine law on $\triangle ABM$ and $\triangle BPM$.

$$\frac{AM}{AB} = \frac{\sin \alpha}{\sin(180^{\circ} - \theta)} \cdots (3)$$

$$\frac{PM}{BP} = \frac{\sin \alpha}{\sin \theta} \quad \cdots \quad (4)$$

Use the fact that $\sin(180^{\circ} - \theta) = \sin \theta$

and
$$AM = x = MC$$
, $AB = 2x$.
(3) = (4): $\frac{AM}{AB} = \frac{PM}{BP} = \frac{1}{2}$

$$MP = MC + PC = x + PC$$

$$PA = AM + MP = 2x + PC$$

$$PB = 2PM = 2x + 2PC$$

$$PA + PC = 2x + PC + PC = PB$$

