


In the figure, $\angle BAD = \angle CAD$, BD = CD and AD is produced to E.

Question: Will *DE* bisect $\angle BDC$?

Answer: The diagram misleads you. It is possible that the diagram is as follows:

In the figure, $\angle BAD = \angle CAD = 30^{\circ}$, AD = 2, $BD = CD = \sqrt{2}$ and AD is produced to E.

Draw the altitudes $DF \perp AB$ and $DG \perp AC$ produced.

Then
$$DF = AD \sin 30^\circ = 2 \sin 30^\circ = 1$$
, $DG = AD \sin 30^\circ = 2 \sin 30^\circ = 1$

$$AF = 2 \cos 30^{\circ} = \sqrt{3} = AG$$

In $\triangle BDG$ and $\triangle CDG$, $BF^2 + 1^2 = 2$ and $CG^2 + 1^2 = 2$

$$\Rightarrow BF = 1$$
 and $CG = 1$

 $\Rightarrow \Delta BDF$ and ΔCDG are right angled isosceles triangles

$$\Rightarrow \angle BDF = 45^{\circ}$$
 and $\angle CDG = 45^{\circ}$

$$\Rightarrow \angle ADB = 60^{\circ} + 45^{\circ} = 105^{\circ} \text{ and } \angle ADC = 60^{\circ} - 45^{\circ} = 15^{\circ}$$

$$\therefore \angle BDE = 180^{\circ} - 105^{\circ} = 75^{\circ} \text{ and } \angle CDE = 180^{\circ} - 15^{\circ} = 165^{\circ}$$

 \therefore ADE may not bisect $\angle BDC$.