Examples on Trinagle inequality

Reference: 1957 HKU O Level Pure Mathematics Paper 2 Q1
Created by Mr. Francis Hung on 20140612
Last updated: 2021-09-04

Example 1 1957 HKU O Level Pure Mathematics Paper 2 Q1(a)

- (a) If M is the mid-point of the side BC of the triangle ABC, prove that AB + AC > 2AM.
- (b) If M is a point of the side BC of the triangle ABC such that BM : MC = m : n, prove that $\frac{nAB + mAC}{m + n} > AM$.
- (a) Produce AM to E such that AM = ME.

(By construction)

(opp. sides //-gram)

(triangle inequality)

(diagonal bisect each other)

(given)

$$BM = MC$$

$$AM = ME$$

$$\therefore AB = CE$$

In
$$\triangle ACE$$
, $AC + CE > AE$

$$AB + AC > 2AM$$

(b)
$$\overrightarrow{AM} = \frac{n\overrightarrow{AB} + m\overrightarrow{AC}}{m+n}$$

$$AM^{2} = \left| \overrightarrow{AM} \right| \cdot \left| \overrightarrow{AM} \right| = \left| \frac{n\overrightarrow{AB} + m\overrightarrow{AC}}{m+n} \right| \cdot \left| \frac{n\overrightarrow{AB} + m\overrightarrow{AC}}{m+n} \right|$$

$$(m+n)^2 AM^2 = n^2 \left| \overrightarrow{AB} \right|^2 + 2nm \overrightarrow{AB} \cdot \overrightarrow{AC} + m^2 \left| \overrightarrow{AC} \right|^2$$

$$= n^2 AB^2 + 2nm(AB)(AC)\cos \angle BAC + m^2AC^2$$

$$\leq n^2 AB^2 + 2nm(AB)(AC) + m^2 AC^2$$
, (equality holds when $\angle BAC = 0^\circ$)

$$= (n AB + m AC)^2$$

$$\therefore \frac{nAB + mAC}{m + n} > AM \text{ for } \angle BAC \neq 0^{\circ}$$

Example 2

In $\triangle ABC$, AB = c, AC = b, P is a point <u>inside</u> $\triangle ABC$. BP = x, CP = y. prove that b + c > x + y.

Proof:

Product BP to Q on AC

In
$$\triangle ABQ$$
, $c + AQ > x + PQ$ (\triangle inequality) $\cdots \cdot \cdot (1)$

In
$$\triangle CPQ$$
, $PQ + QC > y$ (\triangle inequality) $\cdots (2)$

$$(1) + (2) PQ + (AQ + QC) + c > x + y + PQ$$

$$\therefore b + c > x + y$$

Example 3

ABCD is a convex quadrilateral such that the diagonals are perpendicular which intersects at O and OA > OC and OB > OD. To prove AD + BC > AB + CD.

Let the letters a, b, c, d, x, y be as shown.

Reflect $\triangle ACD$ along the line AC to $\triangle ACE$.

$$:: OD < OB :: OB > OE \Rightarrow E$$
 lies inside $\triangle ABC$.

By **Example 2**,
$$b + c > a + d \cdots (1)$$

Apply Pythagoras' Theorem on $\triangle AEO$, $\triangle CEO$, $\triangle ABO$, $\triangle CBO$

$$OD^2 = a^2 - x^2 = d^2 - v^2 \Rightarrow x^2 - v^2 = a^2 - d^2$$

$$OB^2 = b^2 - x^2 = c^2 - y^2 \Rightarrow x^2 - y^2 = b^2 - c^2$$

$$x^2 - v^2 = a^2 - d^2 = b^2 - c^2$$

$$(a + d)(a - d) = (b + c)(b - c)$$

$$\frac{b+c}{a+d} = \frac{a-d}{b-c} \quad \dots (2)$$

$$\ln (1) \quad \frac{b+c}{a+d} > 1$$

$$\Rightarrow$$
 (2) $\frac{a-d}{b-c} > 1$

$$a-d > b-c$$

$$a + c > b + d$$

AD + BC > AB + CD. The result is proved.

Example 4 1971 普通數學課程一試卷二 Q11

In the figure, ABCD is a square, ABE and DFE are straight lines. Prove that DE + DF > 2BD.

4. Let *G* be the mid point of *EF*, $\angle BDG = t$, $\angle FBG = y$, $\triangle BGF = x$.

Then
$$\angle DBG = 45^{\circ} + y$$

Use G as centre, FG as radius to draw a semi-circle.

B lies on the semi-circle (converse, \angle in semi-circle)

$$BG = FG$$
 (radii)

$$\angle GFB = y$$
 (base $\angle s$, isos. Δ)

$$x = 180^{\circ} - 2y \ (\angle s \text{ sum of } \Delta) \dots (1)$$

$$y = 45^{\circ} + t \text{ (ext. } \angle \text{ of } \Delta BDF)$$

$$y > 45^{\circ}$$

$$3y > 135^{\circ}$$

$$45^{\circ} + y > 180^{\circ} - 2y$$

$$45^{\circ} + y > x \text{ (by (1))}$$

$$\angle DBG > \angle BGD$$

DG > BD (bigger side opp. bigger \angle)

$$1/2(DE + DF) > BD$$

$$DE + DF > 2BD$$

Method 2

Draw a line FG // DB, cutting AE at G.

Draw a line $FI \perp FG$, cutting DB at H.

Then it can be easily shown that

$$\Delta IBH \cong \Delta BHF (ASA)$$

$$\therefore IH = FH \text{ (corr. sides } \cong \Delta's)$$

$$IB = BG$$
 (intercept theorem)

$$FG = 2BH \text{ (mid pt. theorem) } \dots (1)$$

In
$$\triangle DHF$$
, $DF > DH$ (2)

In
$$\triangle EFG$$
, $EF > FG$ (3)

$$DF + DE = DF + DF + EF = 2DF + EF$$

> $2DH + FG$ (by (2) and (3))
= $2DH + 2BH = 2BD$ (by (1))

Example 5 1957 HKU O Level Pure Mathematics Paper 2 Q1b

ABCD is a quadrilateral. M, N are the mid-points of the opposite sides AB, CD.

Prove that $AD + BC \ge 2MN$. If AD + BC = 2MN, show that AD is parallel to BC.

Join BD. Let O the mid-point of BD. Join OM, ON.

 $OM + ON \ge MN$ (triangle inequality)

AD = 2OM, BC = 2ON (mid-point theorem)

 $\therefore AD + BC = 2OM + 2ON \ge 2MN$

To prove the second part. Suppose AD + BC = 2MN

Then OM + ON = MN

M, O, N are collinear.

AD // MO // MN, BC // ON // MN (mid-point theorem)

:. AD // BC (transitive property of parallel lines)

Method 2

Produce BN to K so that BN = NK.

$$CN = ND$$
 ($N = \text{mid-point}$)

$$\angle BNC = \angle DNK$$
 (vert. opp. \angle s)

$$BN = NK$$
 (by construction)

$$\therefore \Delta BNC \cong \Delta DNK \qquad (SAS)$$

 $AD + DK \ge AK$ (ADK triangle inequality)

 $AD + BC \ge 2MN$ (mid-point theorem)

Example 6 1965 Paper II Q11

If *P* is any point inside a triangle *ABC*, prove that

$$BC + CA + AB > PA + PB + PC > \frac{1}{2}(BC + CA + AB).$$

1965 Paper II Q11

Theorem Let P be any point inside $\triangle ABC$. Then AB + AC > PB + PC.

Proof: Join BP and produce it to cut AC at Q.

In
$$\triangle ABQ$$
, $AB + AQ > BP + PQ$ (1) (\triangle inequality)
In $\triangle CPQ$, $PQ + QC > PC$ (2) (\triangle inequality)
(1) + (2) $AB + (AQ + QC) + PQ > BP + PC + PQ$
 $\therefore AB + AC > PB + PC$ (3)

The theorem is proved.

(7) + (8) + (9):
$$2(PA + PB + PC) > AB + BC + CA$$

 $\therefore PA + PB + PC > \frac{1}{2}(BC + CA + AB) \dots (**)$

Combine (*) and (**),
$$BC + CA + AB > PA + PB + PC > \frac{1}{2}(BC + CA + AB)$$
.

Example 7 一九六七年中文中學會考乙組數學試卷二第二題

在四邊形 ABCD 中,如 $\angle A$ 為一直角,求證 AB < (CD + BC)。

一九六七年中文中學會考乙組數學試卷二第二題

在四邊形 ABCD 中,如 $\angle A$ 為一直角,求證 AB < (CD + BC)。

In
$$\triangle BCD$$
, $CD + BC > BD$ (triangle inequality)
In $\triangle ABD$, $BD = \sqrt{AB^2 + AD^2}$ (Pythagoras' theorem)
 $> AB$
 $\therefore AB < (CD + BC)$

Example 8 1969 Syllabus A Paper 3 Q16

Reference: 1957 HKU O level Pure Mathematics Paper 2 Q1

- (a) In $\triangle ABC$, AB > AC and AD is a median. By producing AD to E such that AD = DE, prove that $\angle CAD > \angle BAD$.
- (b) In Figure 8, AD is a chord of circle O. AB = BC = CD. Using the result of (a), or by any other method, prove that arc EF > arc AE.

1969 Syllabus A Paper 3 Q16

(a)
$$BD = DC$$

 $AD = DE$

ABEC is a //-gram

$$\therefore AB = CE$$

$$\therefore AB > AC \therefore CE > CA$$

$$\angle CAE > \angle AEC$$

$$\therefore \angle AEC = \angle BAD$$

$$\therefore$$
 $\angle CAD > \angle BAD$

(b) In $\triangle OAC$, radius = OA > OC

Also,
$$AB = BC$$

$$\therefore \angle BOC > \angle AOE$$

arc EF > arc AE

(Definition of median AD)

(By construction)

(diagonal bisect each other)

(opp. sides //-gram)

(greater sides, greater \angle s)

(alt. \angle s, AB // CE)

(*C* lies inside the circle)

(given)

By the result of (*a*)

(eq. ∠s eq. arcs)

Example 9 1971 Syllabus A Paper 3 Q15 (a)

APB is a circle. Q is a point inside the circle and R is a point outside the circle. P, Q and R are on the same side of AB. Prove that $\angle AQB > \angle APB > \angle ARB$.

1971 Syllabus A Paper 3 Q15 (a)

Produce AQ to cut the circle at C. AR cut the circle at D.

Then $\angle APB = \angle ADB = \angle ACB$ (\angle s in the same seg.)

 $\therefore \angle ABR > \angle ABD$ (greater sides opp. greater \angle s)

$$\angle ARB = 180^{\circ} - \angle DAB - \angle ABR \ (\angle s \text{ sum of } \Delta ABR)$$

$$< 180^{\circ} - \angle DAB - \angle ABD$$

 $= \angle ADB \ (\angle s \text{ sum of } \Delta ABD)$

$$\therefore \angle ARB \le \angle ADB = \angle APB$$

 $\therefore \angle ABC > \angle ABQ$ (greater sides opp. greater \angle s)

$$\angle AQB = 180^{\circ} - \angle QAB - \angle ABQ \ (\angle s \text{ sum of } \Delta ABQ)$$

$$> 180^{\circ} - \angle QAB - \angle ABC$$

$$= \angle ACB \ (\angle s \text{ sum of } \Delta ABC)$$

$$\therefore \angle AQB > \angle ACB = \angle APB$$

$$\therefore \angle AOB > \angle APB > \angle ARB$$

If the line segment AR does not cut the circle, let RA produced to cut the circle at D.

Let
$$\angle APB = \theta$$
, $\angle ARB = \alpha$. Join BD.

$$\angle ADB = 180^{\circ} - \theta$$
 (opp. \angle s cyclic quad.)

$$\angle DBR = 180^{\circ} - (180^{\circ} - \theta) - \alpha \ (\angle s \text{ sum of } \Delta)$$

= $\theta - \alpha$

$$\therefore \angle DBR = \theta - \alpha > 0$$

$$\therefore \theta > \alpha$$

$$\Rightarrow \angle APB > \angle ARB$$

1971 普通數學課程一試卷二 Q11

在圖八中 ABCD 為一正方形。ABE、DFE 均為直線。

求證
$$DB < \frac{1}{2}(DE + DF)$$
。

Let G be the mid point of EF, $\angle BDG = t$, $\angle FBG = y$, $\angle BGF = x$.

Then
$$\angle DBG = 45^{\circ} + y$$

Use G as centre, FG as radius to draw a semi-circle.

B lies on the semi-circle (converse, \angle in semi-circle)

$$BG = FG$$
 (radii)

$$\angle GFB = y$$
 (base $\angle s$, isos. Δ)

$$x = 180^{\circ} - 2y \ (\angle \text{ sum of } \Delta) \cdots (1)$$

$$y = 45^{\circ} + t \text{ (ext. } \angle \text{ of } \Delta BDF)$$

$$y > 45^{\circ}$$

$$3y > 135^{\circ}$$

$$45^{\circ} + y > 180^{\circ} - 2y$$

$$45^{\circ} + y > x \text{ (by (1))}$$

$$\angle DBG > \angle BGD$$

DG > BD (bigger side opp. bigger \angle)

$$\frac{1}{2}(DE + DF) > BD$$

Method 2

Draw a line FG // DB, cutting AE at G.

Draw a line $FI \perp FG$, cutting DB at H.

Then it can be easily shown that

 $\Delta IBH \cong \Delta BHF (ASA)$

∴
$$IH = FH$$
 (corr. sides $\cong \Delta s$)

IB = BG (intercept theorem)

 $FG = 2BH \text{ (mid pt. theorem)} \cdots (1)$

In $\triangle DHF$, $DF > DH \cdots (2)$

In
$$\triangle EFG$$
, $EF > FG \cdots (3)$

$$DF + DE = DF + DF + EF = 2DF + EF$$

> $2DH + FG$ (by (2) and (3))
= $2DH + 2BH = 2BD$ (by (1))

$$\frac{1}{2}(DE + DF) > BD$$

1973 香港中文中學會考普通數學課程一試卷二 Q6

圖二所示之各綫段及角度並非依正確比例或度數繪成。在綫段 $AB \cdot AD \cdot AC \cdot BD \cdot DC$ 中,那一條最長,那一條最短?

$$\angle ABD = 180^{\circ} - 91^{\circ} - 44^{\circ} = 45^{\circ}$$
 (\angle sum of $\triangle ABD$)

$$\angle BAD \le \angle ABD \le \angle ADB$$

$$BD \le AD \le AB \cdots (1)$$
 (greater sides opp. greater \angle s)

$$\angle CAD = 180^{\circ} - 89^{\circ} - 44^{\circ} = 47^{\circ}$$
 (\angle sum of $\triangle ACD$)

 $\angle ACD \le \angle CAD \le \angle ADC$

$$AD \le CD \le AC \cdots (2)$$
 (greater sides opp. greater \angle s)

In $\triangle ABC$, $\angle BAC = 44^{\circ} + 47^{\circ} = 91^{\circ}$

 $\angle ACB \le \angle ABC \le \angle BAC$

$$AB \le AC \le BC \cdot \cdots (3)$$
 (greater sides opp. greater \angle s)

Combine (1), (2) and (3):

$$BD \le AD \le AB$$
, $CD \le AC \le BC$

The longest side = AC, the shortest side = BD.