Created by Mr. Francis Hung on 20090506

In the figure, ABCD is a square with side = 2a.

PR and QS are the lines of symmetry of the square intersecting at O.

The corner at *B* is folded to *K* on *SQ*. i.e. $\Delta BCH \cong \Delta KCH$

To prove that $\angle BCH = 30^{\circ}$

Suppose that CH intersects PR at T and SQ at J.

Then it can be easily proved that $\Delta KHT \cong \Delta BHT$ (S.A.S.); $\Delta KCJ \cong \Delta BCJ$ (S.A.S.)

Hence $\Delta KJT \cong \Delta BJT$ (S.S.S.)

Also, it is easy to prove that $\Delta CJQ \cong \Delta BJQ$ (S.A.S.)

$$\therefore \angle CJQ = \angle BJQ = \theta \text{ (corr. } \angle s, \cong \Delta s)$$

$$\angle CJK = \angle CJB = 2\theta$$
 (corr. $\angle s$, $\cong \Delta s$)

$$\angle KJT = \angle CJQ = \theta$$
 (vert. opp. \angle s)

$$\angle BJT = \angle KJT = \theta \text{ (corr. } \angle s, \cong \Delta s)$$

At
$$J$$
, $\theta + \theta + 2\theta + \theta + \theta = 360^{\circ}$ (\angle s at a point)

$$\Rightarrow \theta = 60^{\circ}$$

$$\angle BJC = 2\theta = 120^{\circ}$$

 $\therefore \Delta BJC$ is an isosceles triangle

$$\therefore \angle BCJ = \angle CBJ = 30^{\circ}$$
 (base \angle s isosceles \triangle)