Parallelogram Square

Created by Mr. Francis Hung on 20210902

Pearson Longman Mathematics in Action (2nd edition) Book 3A Chapter 4 P.4.24 Interesting Mathematics

In the figure, ABCD is a parallelogram. ABEF, ADHG, CDIJ, BCKL are squares drawn outwards.

P, Q, R and S are the centres of ABEF, BCKL, CDIJ and ADHG respectively. Prove that PQRS is a square. Join APE, BPF, BQK, CQL, CRI, DRJ, ASH, DSG, PQ, QR, RS, SP.

$$AB = CD$$
 and $AD = BC$ (opp. sides //-gram)

$$AB = BE = EF = FA = CD = DI = IJ = JC$$
, $BC = CK = KL = LB = AD = DH = HG = GA$ (property of squares)

$$AP = BP = EP = FP = CR = DR = JR = IR$$
, $BQ = CQ = KQ = LQ = AS = DS = HS = GS$ (diagonals of squares)

$$\angle PBA = \angle QBC = \angle QCK = \angle RCJ = \angle RDC = \angle SDA = \angle SAG = \angle FAP = 45^{\circ}$$
 (property of squares)

Let
$$\angle ABC = x = \angle ADC$$
 (opp. $\angle s$ of //-gram), $\angle BAD = \angle BCD = 180^{\circ} - x$ (int. $\angle s$, AD // BC)

$$\angle BAF = \angle GAD = \angle ADH = \angle CDI = \angle DCJ = \angle BCK = \angle CBL = \angle ABE = 90^{\circ}$$
 (property of squares)

At A,
$$\angle FAG + 90^{\circ} + 180^{\circ} - x + 90^{\circ} = 360^{\circ}$$
 (\angle s at a point) $\Rightarrow \angle FAG = x$

At C,
$$\angle KCJ + 90^{\circ} + 180^{\circ} - x + 90^{\circ} = 360^{\circ}$$
 (\angle s at a point) $\Rightarrow \angle KCJ = x$

$$\therefore \angle PAS = 90^{\circ} + x = \angle RDS = \angle RCQ = \angle PBQ$$

$$\triangle PAS \cong \triangle RDS \cong \triangle RCQ \cong \triangle PBQ$$
 (S.A.S.)

$$PQ = QR = RS = SP$$
 (corr. sides, $\cong \Delta$ s)

Let
$$\angle BQP = y = \angle CQR = \angle DSR = \angle ASP$$
 (corr. $\angle s, \cong \Delta s$)

$$\angle APB = \angle BQC = \angle CRD = \angle DSA = 90^{\circ}$$
 (property of squares)

$$\angle PQR = 90^{\circ} - y + y = 90^{\circ} = \angle QRS = \angle RSP = \angle SPQ$$

∴ *PQRS* is a square

Last updated: 2022-11-14

In the figure, *ABCD* is a parallelogram. *ABEF*, *ADHG*, *CDIJ*, *BCKL* are squares drawn inwards.

P, Q, R and S are the centres of ABEF, BCKL, CDIJ and ADHG respectively. Prove that PQRS is a square.

Join AP, BP, BQ, CQ, CR, DR, AS, DS, PQ, QR, RS, SP.

$$AB = DC$$
 and $AD = BC$ (opp. sides //-gram)

$$AB = BE = EF = FA = CD = DI = IJ = JC$$
, $BC = CK = KL = LB = AD = DH = HG = GA$ (property of squares)

$$AP = BP = CR = DR$$
, $BQ = CQ = AS = DS$ (diagonals of squares)

$$\angle PBA = \angle OBC = \angle OCK = \angle RCJ = \angle RDC = \angle SDA = \angle SAG = \angle FAP = 45^{\circ}$$
 (property of squares)

Let $\angle PAS = x$

$$\angle PAG = 45^{\circ} - x, \angle BAG = 45^{\circ} - (45^{\circ} - x) = x$$

 $AD \perp AG$ (property of a square) and $AD \parallel BC$ (property of a \/-gram)

$$\therefore BC \perp AG$$
, i.e. $\angle AMB = 90^{\circ}$

$$\angle ABM = 90^{\circ} - x \ (\angle \text{ sum of } \triangle ABM)$$

$$\angle ABQ = 90^{\circ} - x - 45^{\circ} = 45^{\circ} - x = \angle CBP$$

$$\angle PBQ = \angle ABC - \angle ABQ - \angle CBP = 90^{\circ} - x - (45^{\circ} - x) - (45^{\circ} - x) = x$$

$$\therefore \angle PAS = \angle PBQ = x$$

$$\angle BAD = 45^{\circ} + 45^{\circ} + x = 90^{\circ} + x = \angle BCD \text{ (opp. } \angle s \text{ of } //\text{-gram)}$$

$$\angle QCR = 90^{\circ} + x - 45^{\circ} - 45^{\circ} = x$$

$$\angle RCK = 45^{\circ} - x$$
, $\angle DCK = 45^{\circ} - (45^{\circ} - x) = x$

 $BC \perp CK$ (property of a square) and AD // BC (property of a //-gram)

$$\therefore AD \perp CK$$
, i.e. $\angle CND = 90^{\circ}$

$$\angle CDN = 90^{\circ} - x \ (\angle \text{ sum of } \Delta CDN)$$

$$\angle CDS = 90^{\circ} - x - 45^{\circ} = 45^{\circ} - x = \angle ADR$$

$$\angle RDS = \angle ADC - \angle ADR - \angle CDS = 90^{\circ} - x - (45^{\circ} - x) - (45^{\circ} - x) = x$$

$$\therefore \angle QCR = \angle RDS = x$$

$$\Delta PAS \cong \Delta RDS \cong \Delta RCQ \cong \Delta PBQ$$
 (S.A.S.)

$$PQ = QR = RS = SP$$
 (corr. sides, $\cong \Delta$ s)

Let
$$\angle BQP = y = \angle CQR = \angle DSR = \angle ASP$$
 (corr. $\angle s, \cong \Delta s$)

$$\angle APB = \angle BQC = \angle CRD = \angle DSA = 90^{\circ}$$
 (property of squares)

$$\angle PQR = 90^{\circ} - y + y = 90^{\circ} = \angle QRS = \angle RSP = \angle SPQ$$

∴ *PQRS* is a square