Notes on Quadrilaterals

Re-edited by Mr. Francis Hung on 20071219

Ι A quadrilateral is a 4-sided polygon.

- Interior angle sum is 360°. (a)
- All interior angles of a **convex quadrilateral** < 180°. (b)
- Sum of exterior angles of a convex quadrilateral is 360°. (c)
- One interior angle of a **concave quadrilateral** > 180°. (d)

A trapezium is a quadrilateral formed by at least one pair of opposite parallel lines, II

- It possesses all properties of a quadrilateral.
- (b) It possesses all properties of parallel lines.

- Ш A kite is a convex quadrilateral with two pairs of two equal adjacent sides.
 - It possesses all properties of a quadrilateral.
 - (b) One diagonal of a kite bisect the adjacent angles. ($\alpha = \beta$, $\theta = \phi$)
 - (c) The diagonal in (b) bisects the other diagonal at right angle. $(BE = ED \text{ and } AC \perp BD)$

IV A **parallelogram** is a quadrilateral formed by two pairs of parallel lines.

- (a) A parallelogram is a trapezium, it has all properties of a trapezium.
- (b) The opposite sides of a parallelogram are equal.
- The opposite angles of a parallelogram are equal. (c)
- The diagonals of a parallelogram bisect each other. (d)
- Each diagonal bisect the area of the parallelogram. (e)

\mathbf{V} A **rectangle** is a parallelogram with one right angle.

- It possesses all properties of a parallelogram. (a)
- A rectangle has four right angles. (b)
- The diagonals of a rectangle are equal. (c)

VI A **rhombus** has four equal sides.

- (a) A rhombus is also a kite, it has all properties of a kite.
- (b) A rhombus is a parallelogram, it has all properties of a parallelogram.
- (c) The diagonals of a rhombus bisect each angle.

VII A **square** is a rectangle with 2 equal adjacent sides.

- A square has four equal sides. (a)
- (b) A square is a rhombus, it has all properties of a rhombus.
- The diagonals makes 45° with adjacent sides. (c)
- (d) The diagonals are perpendicular to each other.

A. Conditions for a parallelogram:

- 1. Two pairs of parallel lines.
- 2. Two pairs of opposite sides are equal.
- 3. Two pairs of opposite angles are equal.
- 4. One pair of opposite sides are equal and parallel.
- 5. Diagonals bisect each other.

Remark: If AB = CD and AD // BC, then ABCD may not be a parallelogram.

B. Conditions for a rectangle:

- 1. Three angles are 90°.
- 2. It is a parallelogram with two equal diagonals (AC = BD).

C. Condition for a rhombus:

- 1. Four sides equal.
- 2. The diagonals bisect and perpendicular to each other.
- 3. The diagonals bisect each angle.

Proof: Given the diagonals AC and BD intersects at E.

Given $\angle BAE = a = \angle DAE$, $\angle ABE = b = \angle CBE$, $\angle BCE = c = \angle DCE$, $\angle ADE = d = \angle CDE$

$$2a + b + d = 180^{\circ} (\angle \text{ sum of } \Delta) \cdots (1)$$

$$2b + a + c = 180^{\circ} (\angle \text{ sum of } \Delta) \cdots (2)$$

$$2c + b + d = 180^{\circ} (\angle \text{ sum of } \Delta) \cdots (3)$$

$$2d + a + c = 180^{\circ} (\angle \text{ sum of } \Delta) \cdots (4)$$

$$(1) = (3)$$
: $a = c$

$$(2) = (4)$$
: $b = d$

$$\triangle ABE \cong \triangle CBE \cong \triangle CDE \cong \triangle ADE (A.A.S.)$$

$$AB = BC = CD = DA$$
 (corr. sides, $\cong \Delta s$)

∴ ABCD is a rhombus

D. Condition for a square:

- (1) Four equal sides and one right angle.
- (2) Four right angles and two equal adjacent sides.
- (3) The diagonals are equal, perpendicular and bisect each other.
- (4) Each diagonal makes 45° with adjacent sides.

E. Theorem of a kite:

Given that AEC and BED are straight lines.

Proof: Suppose (a), (b) are satisfied.	
DE = BE	Given (a)
$\angle AED = \angle AEB = 90^{\circ}$	Given (b)
AE = AE	common side
$\Delta AED \cong \Delta AEB$	S.A.S.
AD = AB	corr. sides, $\cong \Delta s$
\therefore (c) is true.	
$\angle DAE = \angle BAE$	corr. $\angle s$, $\cong \Delta s$
AC = AC	common side
AD = AB	proved

$$\triangle ADC \cong \triangle ABC$$
 S.A.S.
∠DCE = ∠BCE corr. ∠s, $\cong \triangle$ s
∴(d) is true.

Suppose (a), (c) are satisfied.

$$AE = AE$$
 Common sides

 $DE = BE$ given (a)

 $AD = AB$ given (c)

 $\triangle AED \cong \triangle AEB$ S.S.S.

 $\angle AED = \angle AEB$ corr. $\angle s$, $\cong \triangle s$
 $2\angle AEB = 180^{\circ}$ adj. $\angle s$ on st. line

 $\angle AEB = 90^{\circ}$

(b) is true.		
$\angle DAE = \angle BAE$	corr. $\angle s$, $\cong \Delta s$	
AD = AB	given (c)	
AC = AC	common side	
$\Delta ACD \cong \Delta ABC$	S.A.S.	
$\angle DCA = \angle BCA$	corr. $\angle s$, $\cong \Delta s$	
(d) is true.		
Suppose (b), (c) are satisfied.		

$\angle DCA = \angle BCA$	corr. $\angle s$, $\cong \Delta s$	
(d) is true.		
Suppose (b), (c) are satisfied.		
AD = AB	given (c)	
$\angle AED = \angle AEB = 90^{\circ}$	given (b)	
AE = AE	common side	
$\Delta AED \cong \Delta AEB$	R.H.S.	

$$DE = EB$$
 corr. sides, $\cong \Delta s$ (a) is true.

 $\angle DAE = \angle BAE$ corr. $\angle s$, $\cong \Delta s$ AD = ABgiven (c) AC = ACcommon side

Created by Mr. Francis Hung

 $\Delta ACD \cong \Delta ABC$ S.A.S. $\angle DCA = \angle BCA$ corr. $\angle s$, $\cong \Delta s$ (d) is true.

Suppose (a), (d) are satisfied. $\angle CAD = \angle CAB$ given (d) $\angle ACD = \angle ACB$ given (d) AC = ACcommon side $\Delta ACD \cong \Delta ACB$ A.S.A.

AD = AB, CD = CBcorr. sides, $\cong \Delta s$ (c) is true.

DE = EBgiven (a) AE = AEcommon side $\triangle ADE \cong \triangle ABE$ S.S.S.

 $\angle AED = \angle AEB$ corr. $\angle s$, $\cong \Delta s$ $2\angle AEB = 180^{\circ}$ adj. ∠s on st. line $\angle AEB = 90^{\circ}$

(b) is true.

Suppose (b), (d) are satisfied.

 $\angle CAD = \angle CAB$ given (d) $\angle ACD = \angle ACB$ given (d) AC = ACcommon side $\Delta ACD \cong \Delta ACB$ A.S.A.

AD = AB, CD = CBcorr. sides, $\cong \Delta s$

(c) is true.

AE = AEcommon side $\angle AED = \angle AEB = 90^{\circ}$ given (b) $\triangle ADE \cong \triangle ABE$ R.H.S. DE = EBcorr. sides, $\cong \Delta s$

(a) is true. Suppose (c), (d) are satisfied.

The proof (a),(b) are left to you as exercise

Page 3

Summary of Quadrilaterals

