To tessellate a given point *P* by three regular polygons.

Created by Mr. Francis Hung on 20180921.

Last updated:01/09/2021

Given a fixed point *P*. The above figure shows a square, a regular pentagon and a regular 20-sided polygon tessellate *P*. Find all possible answers.

Suppose a regular a-sided polygon, a regular b-sided polygon, and a regular c-sided polygon tessellate P, where $a \le b \le c$.

Then the three interior angles at P are: $180^{\circ} - \frac{360^{\circ}}{a}$, $180^{\circ} - \frac{360^{\circ}}{b}$ and $180^{\circ} - \frac{360^{\circ}}{c}$.

∴
$$180^{\circ} - \frac{360^{\circ}}{a} + 180^{\circ} - \frac{360^{\circ}}{b} + 180^{\circ} - \frac{360^{\circ}}{c} = 360^{\circ} \ (\angle s \text{ at a point})$$

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{1}{2}$$

If
$$a = 3$$
, then $\frac{1}{b} + \frac{1}{c} = \frac{1}{6}$

$$6(b+c) = bc$$

$$bc - 6b - 6c = 0$$

$$bc - 6b - 6c + 36 = 36$$

$$(b-6)(c-6) = 36$$

b-6	c - 6	b	С
1	36	7	42
2	18	8	24
3	12	9	18
4	9	10	15
6	6	12	12

If
$$a = 4$$
, then $\frac{1}{b} + \frac{1}{c} = \frac{1}{4}$

$$4(b+c) = bc$$

$$bc - 4b - 4c = 0$$

$$bc - 4b - 4c + 16 = 16$$

$$(b-4)(c-4) = 16$$

b-4	c-4	b	c
1	16	5	20
2	8	6	12
4	4	8	8

If
$$a = 5$$
, then $\frac{1}{b} + \frac{1}{c} = \frac{3}{10}$

$$10(b+c) = 3bc$$

$$3bc - 10b - 10c = 0$$

$$9bc - 30b - 30c + 100 = 100$$

$$3b(3c-10) - 10(3c-10) = 100$$

$$(3b-10)(3c-10) = 100$$

3b - 10	3c - 10	b	С
1	100	no integral solution	
2	50	$4 (b \le a, \text{ rejected})$	20
4	25	no integral solution	
5	20	5	10
10	10	no integral solution	

If
$$a = 6$$
, then $\frac{1}{b} + \frac{1}{c} = \frac{1}{3}$ (*)

$$bc - 3b - 3c = 0$$

$$bc - 3b - 3c + 9 = 9$$

$$(b-3)(c-3) = 9$$

b-3	c – 3	b	С
1	9	$4 (b \le a, \text{ rejected})$	12
3	3	6	6

If
$$a \ge 7$$
, then $\frac{1}{a} < \frac{1}{6}$, $\frac{1}{b} < \frac{1}{6}$, $\frac{1}{c} < \frac{1}{6} \Rightarrow 180^{\circ} - \frac{360^{\circ}}{a} > 120^{\circ}$, $180^{\circ} - \frac{360^{\circ}}{b} > 120^{\circ}$, $180^{\circ} - \frac{360^{\circ}}{c} > 120^{\circ}$

$$360^{\circ} = 180^{\circ} - \frac{360^{\circ}}{a} + 180^{\circ} - \frac{360^{\circ}}{b} + 180^{\circ} - \frac{360^{\circ}}{c} > 120^{\circ} + 120^{\circ} + 120^{\circ} = 360^{\circ}, \text{ contradiction}$$

In conclusion:

а	b	С	Interior \angle of a	Interior \angle of b	Interior \angle of c
3	7	42	60°	900° 7	1200° 7
3	8	24	60°	135°	165°
3	9	18	60°	140°	160°
3	10	15	60°	144°	156°
3	12	12	60°	150°	150°
4	5	20	90°	108°	162°
4	6	12	90°	120°	150°
4	8	8	90°	135°	135°
5	5	10	108°	108°	144°
6	6	6	120°	120°	120°

To tessellate a given point *P* by four regular polygons

Suppose a regular a-sided polygon, a regular b-sided polygon, a regular c-sided polygon and a regular d-sided polygon tessellate P, where $a \le b \le c \le d$.

The four interior angles at *P* are: $180^{\circ} - \frac{360^{\circ}}{a}$, $180^{\circ} - \frac{360^{\circ}}{b}$, $180^{\circ} - \frac{360^{\circ}}{c}$ and $180^{\circ} - \frac{360^{\circ}}{d}$.

$$\therefore 180^{\circ} - \frac{360^{\circ}}{a} + 180^{\circ} - \frac{360^{\circ}}{b} + 180^{\circ} - \frac{360^{\circ}}{c} + 180^{\circ} - \frac{360^{\circ}}{d} = 360^{\circ} \ (\angle s \text{ at a point})$$

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} = 1$$

If
$$(a, b) = (3, 3)$$
, then $\frac{1}{c} + \frac{1}{d} = \frac{1}{3}$

By the result of (*), (c, d) = (6, 6).

If
$$(a, b) = (3, 4)$$
, then $\frac{1}{c} + \frac{1}{d} = \frac{5}{12}$

$$12(c+d) = 5cd$$

$$5cd - 12c - 12d = 0$$

$$25cd - 60c - 60d + 144 = 144$$

$$(5c - 12)(5d - 12) = 144$$

(3c - 12)(3a - 12) - 144			
5c - 12	5 <i>d</i> – 12	c	d
1	144	no integral solution	
2	72	no integral solution	
3	48	$3 (c \le b, \text{ rejected})$	
4	36	no integral solution	
6	24	no integral solution	
8	18	4	6
9	16	no integral solution	
12	12	no integral solution	

If a = 3, $b \ge 5$, then $c \ge 5$, $d \ge 5$, the interior angles are 60° , B, C, D, where B, C, $D \ge 108^{\circ}$.

Sum of angle at $P \ge (60 + 3 \times 108)^\circ = 384^\circ$. This violates the fact \angle s at a point = 360°.

$$2(c+d) = cd$$

$$cd - 2c - 2d + 4 = 4$$

$$(c-2)(d-2) = 4$$

c-2	d-2	c	d	
1	4	3 (c < b, rejected)	6	
2	2	4	4	

In conclusion:

а	b	c	d	Interior \angle of a	Interior \angle of b	Interior \angle of c	Interior \angle of d
3	3	6	6	60°	60°	120°	120°
3	4	4	6	60°	90°	90°	120°
4	4	4	4	90°	90°	90°	90°

To tessellate a given point P by five regular polygons

Suppose a regular *a*-sided polygon, a regular *b*-sided polygon, a regular *c*-sided polygon and a regular *e*-sided polygon tessellate *P*, where $a \le b \le c \le d \le e$.

The interior angles at *P* are:
$$180^{\circ} - \frac{360^{\circ}}{a}$$
, $180^{\circ} - \frac{360^{\circ}}{b}$, $180^{\circ} - \frac{360^{\circ}}{c}$, $180^{\circ} - \frac{360^{\circ}}{d}$ and $180^{\circ} - \frac{360^{\circ}}{e}$.

$$\therefore 180^{\circ} - \frac{360^{\circ}}{a} + 180^{\circ} - \frac{360^{\circ}}{b} + 180^{\circ} - \frac{360^{\circ}}{c} + 180^{\circ} - \frac{360^{\circ}}{d} + 180^{\circ} - \frac{360^{\circ}}{e} = 360^{\circ} \ (\angle s \text{ at a point})$$

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d} + \frac{1}{e} = \frac{3}{2}$$

If
$$(a, b, c) = (3, 3, 3)$$
, then $\frac{1}{d} + \frac{1}{e} = \frac{1}{2}$

By the result of (**), (d, e) = (3, 6) or (4, 4).

If (a,b) = (3,3) and $c \ge 4$, then $d \ge 4$, $e \ge 4$, the interior \angle s are 60°, 60°, C, D, E, where C, D, E > 90° Sum of angle at $P \ge 60° + 60° + 90° \times 3 = 390°$. This violates the fact \angle s at a point = 360°. In conclusion:

a	b	С	d	e	Interior \angle of a	Interior \angle of b	Interior \angle of c	Interior \angle of d	Interior \angle of e
3	3	3	3	6	60°	60°	60°	60°	120°
3	3	3	4	4	60°	60°	60°	90°	90°

To tessellate a given point P by six regular polygons

Suppose the regular polygons with the number of sides: a, b, c, d, e and f tessellate P, where $a \le b \le c \le d \le e \le f$.

If a = b = c = d = e = f = 3, then the interior angles are all equal to 60°.

The angle sum at $P = 6 \times 60^{\circ} = 360^{\circ}$. This is a possible solution.

If f > 3, then the sum of angles at $P > 360^{\circ}$, which is impossible.

There are no other solutions.

It is impossible to tessellate a given point *P* by more than six regular polygons.

To tessellate a plane by regular polygons with the same vertex configuration at every point

а	b	С	Interior \angle of a	Interior \angle of b	Interior \angle of c
3	7	42	60°	900°	1200°
	′	72	00	7	7

Sum of interior angles at point $P = 60^{\circ} + \frac{900^{\circ}}{7} + \frac{900^{\circ}}{7} = \frac{2220^{\circ}}{7}$ Impossible

a	b	С	Interior \angle of a	Interior \angle of b	Interior \angle of c
3	8	24	60°	135°	165°

Sum of interior angles at point $P = 60^{\circ} + 135^{\circ} + 135^{\circ} = 330^{\circ}$ Impossible

Hence, the bottom angle at P must be tessellated by the 3 interior angles of a, b and c.

a	b	c	Interior \angle of a	Interior \angle of b	Interior \angle of c	sum of angles at P	conclusion
3	9	18	60°	140°	160°	60°+140°+140°=340°	impossible
3	10	15	60°	144°	156°	60°+144°+144°=348°	impossible
3	12	12	60°	150°	150°	60°+150°+150°=360°	possible

vertex configuration [3,12,12]

a	b	С	Interior \angle of a	Interior \angle of b	Interior \angle of c	sum of angles at P	conclusion
4	5	20	90°	108°	162°	90°+108°+90°=288°	impossible

a	b	c	Interior \angle of a	Interior \angle of b	Interior \angle of c
4	6	12	90°	120°	150°

vertex configuration [4,6,12]

a	b	c	Interior \angle of a	Interior \angle of b	Interior \angle of c	sum of angles at P	conclusion
4	8	8	90°	135°	135°	90°+135°+135°=360°	possible

vertex configuration [4,8,8]

a	b	c	Interior \angle of a	Interior \angle of b	Interior \angle of c	sum of angles at P	conclusion
5	5	10	108°	108° 144°		108°+108°+108°=324°	impossible

a	b	С	Interior \angle of a	Interior \angle of b	Interior \angle of c	sum of angles at P	conclusion
6	6	6	120°	120°	120°	120°+120°+120°=360°	possible

vertex configuration [6,6,6]

а	b	С	d	Interior \angle of a	Interior \angle of b	Interior \angle of c	Interior \angle of d
3	3	6	6	60°	60°	120°	120°

Although the regular polygons can tessellate the plane, the vertex configurations at P and Q are [3,3,3,3,3,3] and [3,3,6,6]. So it is not a semi-regular tessellation.

vertex configuration [3,6,3,6]

a	b	С	d	Interior \angle of a	Interior \angle of b	Interior \angle of c	Interior \angle of d
3	4	4	6	60°	90°	90°	120°

vertex configuration [3,4,6,4]

Although the regular polygons can tessellate the plane, the vertex configurations at P and Q are [3,4,6,4] and [3,4,4,6]. So it is not a semi-regular tessellation.

а	b	С	d	Interior \angle of a	Interior \angle of b	Interior \angle of c	Interior \angle of d
4	4	4	4	90°	90°	90°	90°

vertex configuration [4,4,4,4]

a	b	С	d	e	Interior \angle of a	Interior \angle of b	Interior \angle of c	Interior \angle of d	Interior \angle of e
3	3	3	3	6	60°	60°	60°	60°	120°

vertex configuration [3,3,3,3,6]

а	b	С	d	e	Interior \angle of a	Interior \angle of b	Interior \angle of c	Interior \angle of d	Interior \angle of e
3	3	3	4	4	60°	60°	60°	90°	90°

vertex configuration [3,3,3,4,4] or

[3,3,4,3,4]

If a = b = c = d = e = f = 3, then the interior angles are all equal to 60° .

vertex configuration [3,3,3,3,3,3]

Conclusion Regular tessellation by a single polygon

Conclusion Regular tessellation by a single polygon									
Types of polygon	vertex configuration	Diagram							
Equilateral triangles	[3,3,3,3,3,3]								
Squares	[4,4,4,4]								
Regular hexagon	[6,6,6]								

Semi-regular tessellation by more than one polygon (same vertex configuration at every point)

[4,8,8]	
[3,6,3,6]	
[3,4,6,4]	
[3,3,3,3,6]	
[3,3,3,4,4]	
[3,3,4,3,4]	