

A, B and C are three points on a line L_1 , D, E and E are three points on another line L_2 . AE and BD intersect at G, AF and CD intersect at H, BF and CE intersect at I.

Prove that *G*, *H* and *I* are collinear.

Proof: Suppose AE is not parallel to BF. They intersect at P. CD intersect AE and BF at Q and R. Apply Menelaus' theorem on ΔPQR .

Transversal Product ratio Equation

$$ABC \quad \frac{PA}{AQ} \cdot \frac{QC}{CR} \cdot \frac{RB}{BP} = -1 \quad \dots \dots (1)$$

$$BGD \quad \frac{PG}{GQ} \cdot \frac{QD}{DR} \cdot \frac{RB}{BP} = -1 \quad \dots \dots (2)$$

$$AHF \quad \frac{PA}{AQ} \cdot \frac{QH}{HR} \cdot \frac{RF}{FP} = -1 \quad \dots \dots (3)$$

$$CIE \quad \frac{PE}{EQ} \cdot \frac{QC}{CR} \cdot \frac{RI}{IP} = -1 \quad \dots \dots (4)$$

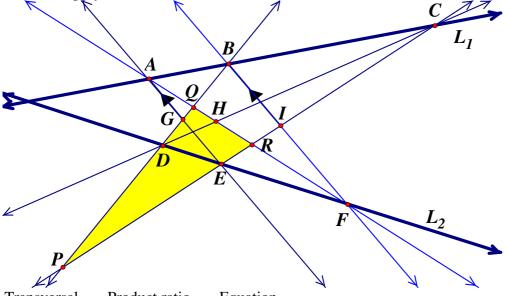
$$DEF \quad \frac{PE}{EQ} \cdot \frac{QD}{DR} \cdot \frac{RF}{FP} = -1 \quad \dots \dots (5)$$

$$\frac{(2) \times (3) \times (4)}{(1) \times (5)} : \frac{PG}{QQ} \cdot \frac{QD}{DR} \cdot \frac{RB}{BP} \cdot \frac{PA}{AQ} \cdot \frac{QH}{HR} \cdot \frac{RF}{FP} \cdot \frac{PE}{EQ} \cdot \frac{QC}{CR} \cdot \frac{RI}{IP} = -1$$

$$\frac{PG}{GQ} \cdot \frac{QH}{HR} \cdot \frac{RI}{IP} = -1$$

If AE is parallel to BF, but BD is not parallel to CE. They intersect at P. AF intersects BD and CE at

Q and R. Apply Menelaus' theorem on ΔPQR .



Transversal Product ratio Equation

$$ABC \qquad \frac{PB}{BQ} \cdot \frac{QA}{AR} \cdot \frac{RC}{CP} = -1 \quad \dots \dots (1)$$

$$BIF \qquad \frac{PB}{BQ} \cdot \frac{QF}{FR} \cdot \frac{RI}{IP} = -1 \quad \dots \dots (2)$$

$$AGE \qquad \frac{PG}{GQ} \cdot \frac{QA}{AR} \cdot \frac{RE}{EP} = -1 \quad \dots \dots (3)$$

$$AGE \qquad \frac{GQ}{GQ} \cdot \frac{EP}{AR} \cdot \frac{EP}{EP} = -1 \quad \dots (3)$$

$$PD \quad OH \quad RC$$

$$CHD \qquad \frac{PD}{DQ} \cdot \frac{QH}{HR} \cdot \frac{RC}{CP} = -1 \quad \dots (4)$$

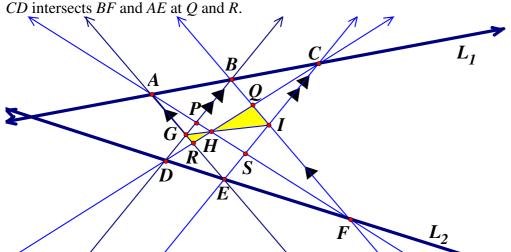
$$PD \quad OF \quad RE$$

$$DEF \qquad \frac{PD}{DQ} \cdot \frac{QF}{FR} \cdot \frac{RE}{EP} = -1 \quad \cdots (5)$$

$$\frac{(2)\times(3)\times(4)}{(1)\times(5)}:\frac{\stackrel{PB}{BQ}\cdot\stackrel{QF}{FR}\cdot\stackrel{RI}{IP}\cdot\stackrel{PG}{GQ}\cdot\stackrel{QA}{AR}\cdot\stackrel{RE}{EP}\cdot\stackrel{PD}{DQ}\cdot\stackrel{QH}{HR}\cdot\stackrel{RC}{CP}}{\stackrel{PB}{BQ}\cdot\stackrel{QA}{AR}\cdot\stackrel{RC}{CP}\cdot\stackrel{PD}{DQ}\cdot\stackrel{QF}{FR}\cdot\stackrel{RE}{EP}}=-1$$

$$\frac{PG}{GQ} \cdot \frac{QH}{HR} \cdot \frac{RI}{IP} = -1$$

If AE is parallel to BF and BD is parallel to CE. Suppose AF intersects BD and CE at P and S,



We can use the properties of similar triangles and the ratio of the corresponding sides to derive the results:

Similar triangles Ratios of corresponding sides Equation

$$\Delta DGR \sim \Delta DBQ$$

$$\frac{GR}{BQ} = \frac{DR}{DQ} \qquad \cdots (1)$$

$$\Delta DER \sim \Delta DFQ$$

$$\frac{ER}{FQ} = \frac{DR}{DQ} \qquad \cdots (2)$$

$$\Delta CBQ \sim \Delta CAR$$
 $\frac{BQ}{AR} = \frac{CQ}{CR}$ (3)

$$\Delta CIQ \sim \Delta CER$$
 $\frac{IQ}{ER} = \frac{CQ}{CR}$ (4)

$$\Delta AHR \sim \Delta FQH$$

$$\frac{RH}{HQ} = \frac{AR}{FQ} \qquad \cdots (5)$$

$$\frac{(2)\times(4)}{(1)\times(3)}: \frac{\frac{ER}{FQ}\cdot\frac{IQ}{ER}}{\frac{GR}{BQ}\cdot\frac{BQ}{AR}} = \frac{\frac{DR}{DQ}\cdot\frac{CQ}{CR}}{\frac{DR}{DQ}\cdot\frac{CQ}{CR}} = 1$$

$$\frac{AR}{FQ} \cdot \frac{IQ}{GR} = 1 \Rightarrow \frac{AR}{FQ} = \frac{GR}{IQ} \cdot \cdot \cdot \cdot \cdot (6)$$

Compare (5) and (6), we have $\frac{RH}{HQ} = \frac{GR}{IQ}$

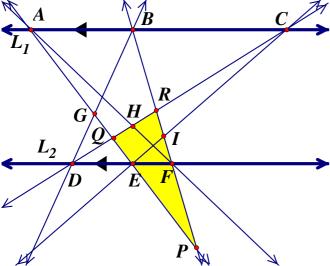
$$\angle GRH = \angle IQH$$
 (alt. \angle s $AE // BF$)

∴
$$\triangle GRH \sim \triangle IQH$$
 (2 sides proportional, included \angle s)

$$\angle GHR = \angle IHQ$$
 (corr. $\angle s$, $\sim \Delta s$)

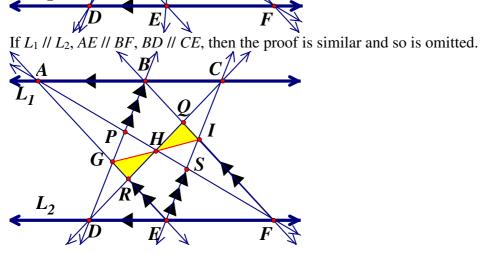
$$\therefore$$
 G, H, I are collinear (vert. opp. \angle s equal and QHR is a st. line)

If $L_1 // L_2$, and AE is not parallel to BF, then the proof is similar and so is omitted.



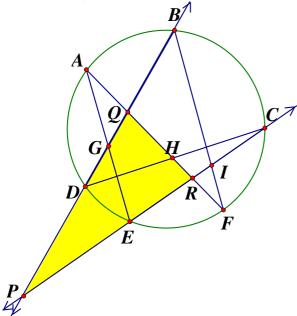
If $L_1 // L_2$, and AE // BF, but BD is not parallel to CE, then the proof is similar and so is omitted.





Pascal's theorem

A, B, C, D, E, F are six points in order on the circumference of a circle. AE and BD intersect at G, AF and CD intersect at H, BF and CE intersect at I. Prove that G, H and I are collinear.



Proof: Suppose BD is not parallel to CE. They intersect at P. AF intersects BD and CE at Q and R. By intersecting chords theorem,

$$PB \times PD = CP \times EP \Rightarrow \frac{PB}{CP} \cdot \frac{PD}{EP} = 1 \cdot \cdots \cdot (1)$$

$$BQ \times DQ = QA \times QF \Rightarrow \frac{QA}{BQ} \cdot \frac{QF}{DQ} = 1 \cdot \cdot \cdot \cdot \cdot (2)$$

$$AR \times FR = RC \times RE \Rightarrow \frac{RC}{AR} \cdot \frac{RE}{FR} = 1 \quad \dots (3)$$

Apply Menelaus' theorem on ΔPQR :

Transversal Product ratio Equation

$$BIF \qquad \frac{PB}{BO} \cdot \frac{QF}{FR} \cdot \frac{RI}{IP} = -1 \quad \cdots (4)$$

$$AGE \qquad \frac{PG}{GO} \cdot \frac{QA}{AR} \cdot \frac{RE}{EP} = -1 \quad \cdots (5)$$

$$CHD \qquad \frac{PD}{DQ} \cdot \frac{QH}{HR} \cdot \frac{RC}{CP} = -1 \quad \cdots (6)$$

$$\frac{(4)\times(5)\times(6)}{(1)\times(2)\times(3)}:\frac{\stackrel{PB}{BQ}\cdot \stackrel{QF}{FR}\cdot \stackrel{RI}{IP}\cdot \stackrel{PG}{QQ}\cdot \stackrel{QA}{AR}\cdot \stackrel{RE}{EP}\cdot \stackrel{PD}{DQ}\cdot \stackrel{QH}{HR}\cdot \stackrel{RC}{CP}}{\stackrel{PB}{CP}\cdot \stackrel{QA}{BQ}\cdot \stackrel{RC}{AR}\cdot \stackrel{PD}{EP}\cdot \stackrel{QF}{DQ}\cdot \stackrel{RE}{FR}}=-1$$

$$\frac{PG}{GO} \cdot \frac{QH}{HR} \cdot \frac{RI}{IP} = -1$$

If BD is parallel to CE, but AE is not parallel to BF. They intersect at P. CD intersects AE and BF at Q and R. By intersecting chords theorem,

$$PA \times PE = PB \times PF \Rightarrow \frac{PB}{CP} \cdot \frac{PD}{EP} = 1 \quad \cdots (1)$$

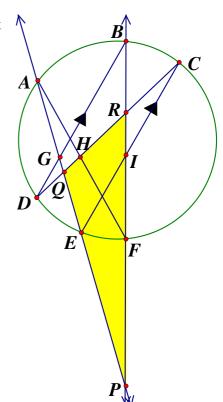
$$BR \times FR = CR \times DR \Rightarrow \frac{QA}{BQ} \cdot \frac{QF}{DQ} = 1 \cdot \cdot \cdot \cdot \cdot (2)$$

$$AQ \times QE = CQ \times QD \Rightarrow \frac{RC}{AR} \cdot \frac{RE}{FR} = 1 \cdot \cdot \cdot \cdot \cdot (3)$$

Apply Menelaus' theorem on ΔPQR .

Transversal Product ratio Equation $CIE \qquad \frac{PI}{IR} \cdot \frac{RC}{CQ} \cdot \frac{QE}{EP} = -1 \quad \dots (4)$ $AHF \qquad \frac{PA}{AQ} \cdot \frac{QH}{HF} \cdot \frac{RF}{FP} = -1 \quad \dots (5)$

$$BGD \qquad \frac{PG}{GO} \cdot \frac{QD}{DR} \cdot \frac{RB}{BP} = -1 \quad \cdots (6)$$



$$\frac{(4)\times(5)\times(6)}{(1)\times(2)\times(3)}:\frac{\stackrel{PI}{IR}\cdot\frac{RC}{CQ}\cdot\frac{QE}{EP}\cdot\frac{PA}{AQ}\cdot\frac{QH}{HF}\cdot\frac{RF}{FP}\cdot\frac{PG}{GQ}\cdot\frac{QD}{DR}\cdot\frac{RB}{BP}}{\stackrel{PB}{CP}\cdot\frac{QA}{BQ}\cdot\frac{RC}{AR}\cdot\frac{PD}{EP}\cdot\frac{QF}{DQ}\cdot\frac{RE}{FR}}=-1$$