Theorem of equal ratios

Created by Mr. Francis Hung on 22 November 2018

Last updated: 2022-12-04

Given three parallel lines L_1 , L_2 , L_3 .

Two intercepts PQ and RS intersecting L_1 , L_2 , L_3 at A, B, C, $^{<}$ D, E, F respectively as shown in the figure.

Then $\frac{AB}{BC} = \frac{DE}{EF}$.

Proof: Suppose PQ and RS are not parallel

Let
$$AB = a$$
, $BC = b$, $DE = c$, $EF = d$

Draw DG and FH parallel to ABC, cutting AD produced at G and BE produced at H

ABEG and BCFH are parallelograms

$$GE = AB = a$$
, $HF = BC = b$ (opp. sides of //-gram)

$$\angle EDG = \angle FEH$$
 (corr. \angle s, $AG // BH$)

$$\angle EGD = \angle GEH$$
 (alt. $\angle s$, $DG // EH$)

$$\angle GEH = \angle EHF$$
 (alt. $\angle s$, $GE // HF$)

$$\therefore$$
 $\angle EGD = \angle EHF$

$$\angle DEG = \angle EFH$$
 (corr. \angle s, $EG // FH$)

$$\Delta DEG \sim \Delta EFH$$
 (equiangular)

$$\frac{d}{dt} = \frac{c}{dt}$$
 (corr. sides, $\sim \Delta s$)

$$\frac{AB}{BC} = \frac{DE}{EF}$$

If PQ // RS, then ABED and BCFE are parallelograms.

$$AB = DE$$
 and $BC = EF$ (opp. sides, //-gram)

$$\frac{AB}{BC} = \frac{DE}{EF}$$

Example 1

As shown in the figure, the area of $\triangle ABC$ is 10. D, E, F are points on AB, BC and CA respectively such that AD:DB=2:3, and area of $\triangle ABE=$ area of quadrilateral BEFD. Find the area of $\triangle ABE$. Join DE. Area of $\triangle ADE=$ area of $\triangle DEF$

 \therefore $\triangle ADE$ and $\triangle DEF$ have the same base and the same height \therefore DE //AC

Area of
$$\triangle ABE = \text{Area of } \triangle ABC \times \frac{BE}{BC} = 10 \times \frac{3}{3+2} = 6$$

In $\triangle ABC$, DE //BC, FE //DC, AF = 2, FD = 3 and DB = X. Find the value of X.

AE : EC = 2 : 3 (theorem of eq. ratio)

AD:DB=2:3 (theorem of eq. ratio)

$$DB = (2+3) \times \frac{3}{2} = 7.5$$

Example 3

In Figure 5, the area of $\triangle DEF$ is 30 cm². EIF, DJF and DKE are straight lines. P is the intersection point of DI and FK. Let EI : IF = 1: 2, FJ : JD = 3: 4, DK : KE = 2: 3.

Let the area of $\triangle DFP$ be $B \text{ cm}^2$, find the value of B.

Let
$$EI = t$$
, $IF = 2t$, $DK = 2x$, $KE = 3x$

Draw a line IM parallel to KF cutting DE at M.

By the theorem of equal ratio, $\frac{EM}{MK} = \frac{EI}{IF} = \frac{1}{2}$

$$\therefore EM = x, MK = 2x$$

$$DP = PI$$
 (Intercept theorem)

Area of
$$\Delta DIF = \frac{2}{3}$$
 area of $\Delta DFE = 20 \text{ cm}^2$

Area of
$$\Delta DFP = \frac{1}{2}$$
 area of $\Delta DIF = 10 \text{ cm}^2$

$$\Rightarrow B = 10$$

Example 4

In the figure, ABC is a triangle, E is the midpoint of BC, F is a point on AE where AE = 3AF. The extension segment of BF meets AC at D. Given that the area of ΔABC is 48 cm². Let the area of ΔAFD be g cm², find the value of g.

From E, draw a line EG // BD which cuts AC at G.

$$AE = 3AF \Rightarrow AF : FE = 1 : 2$$
; let $AE = k$, $FE = 2k$

E is the mid-point of $BC \Rightarrow BE = EC = t$

 $S_{ABE} = S_{ACE} = \frac{1}{2} \cdot 48 \text{ cm}^2 = 24 \text{ cm}^2 \text{ (same base, same height)}$

$$AD:DG=AF:FE=1:2$$
 (theorem of equal ratio)

$$DG:GC=BE:EC=1:1$$
 (theorem of equal ratio)

$$\therefore AD:DG:GC=1:2:2$$

 S_{AEG} : $S_{CEG} = 3$: 2 (same height, ratio of base = 3:2)

$$S_{AEG} = 24 \times \frac{3}{2+3} \text{ cm}^2 = \frac{72}{5} \text{ cm}^2$$

 $\Delta ADF \sim \Delta AGE$

$$\Rightarrow S_{ADF} = \frac{1}{9} S_{AEG} = \frac{1}{9} \cdot \frac{72}{5} \text{ cm}^2 = \frac{8}{5} \text{ cm}^2$$

$$g=\frac{8}{5}$$

