Angles in a circle

Created by Mr. Francis Hung on 20210922

Last updated: 2021-09-22

In the figure, A, P, B, Q are 4 points (in order) in a circle, centre at O.

 $\angle AOB = z$ is called the angle at centre subtended by the arc AQB or AB.

Reflex $\angle AOB = 360^{\circ} - z$ (\angle s at a point)

This is the angle at centre subtended by the arc \widehat{APB} .

 $\angle APB = x$ is called the angle at circumference (or \angle at \odot^{ce}) subtended by the

arc \widehat{AOB} or \widehat{AB} .

 $\angle AOB = y$ is the angle at circumference (or \angle at \bigcirc ^{ce}) subtended by arc \widehat{APB} .

Theorem 1 Angle at centre twice angle at at circumference $\angle AOB = 2\angle APB$. i.e. z = 2x

P, O, A are collinear or P, O, B are collinear. Case 1

Without loss of generality, assume P, O, B are collinear.

 $\angle APB = x$, $\angle AOB = z$

OA = OP(radii)

 $\therefore \triangle OAP$ is an isosceles \triangle

 $\angle OAP = \angle APB = x$ (base \angle s isos. Δ)

In $\triangle OAP$,

 $\angle OAP + \angle APB = \angle AOB$ (ext. \angle of Δ)

x + x = z

 $\therefore z = 2x$

Case 3

P, O, A are not collinear and P, O, B are not collinear Case 2

AP does not intersect OB and BP does not intersect OA.

 $\angle APB = x$, $\angle AOB = z$

Join *PO* and produce it to meet the circle again at *Q*.

OP = OA = OB

(radii)

 $\triangle OAP$ and $\triangle OBP$ are isosceles \triangle s

 $\angle OAP = \angle APO$

(base \angle s isos. Δ)

 $\angle OBP = \angle BPO$

(base \angle s isos. Δ)

In $\triangle OAP$,

 $\angle OAP + \angle APO = \angle AOQ$

(ext. \angle of \triangle) ····· (1)

(ext. \angle of \triangle) ····· (2)

In $\triangle OBP$,

$$\angle OBP + \angle BPO = \angle BOO$$

(1) + (2): x + x = z

P, O, A are not collinear and P,O, B are not collinear AP intersects OB or BP intersects OA.

Without loss of generality, assume AP intersects OB

 $\angle APB = x$, $\angle AOB = z$

Join *PO* and produce it to meet the circle again at *Q*.

OP = OA = OB(radii)

 $\triangle OAP$ and $\triangle OBP$ are isosceles $\triangle s$

 $\angle OAP = \angle APO$

(base \angle s isos. Δ)

 $\angle OBP = \angle BPO$

(base \angle s isos. Δ)

In $\triangle OAP$,

 $\angle OAP + \angle APO = \angle AOQ$

(ext. \angle of \triangle) ····· (3)

In $\triangle OBP$,

 $\angle OBP + \angle BPO = \angle BOQ$ (ext. \angle of \triangle) ····· (4)

(4) - (3): x + x = z

 $\therefore z = 2x$

Abbreviation:

∠ at centre twice ∠ at ⊙ ce

Angle in semi-circle

Created by Mr. Francis Hung on 20210922.

Last updated: 2021-09-22

In the figure, AB is a diameter in a circle, centre at O. P is any point on the circle other than A and B. Then $\angle APB = 90^{\circ}$.

 $\angle AOB = 2\angle APB$ (\angle at centre twice \angle at \odot^{ce})

 $\angle APB = 90^{\circ}$

Method 2 Join *OP*.

OA = OP = OB (radii)

 $\triangle OAP$ and $\triangle OBP$ are isosceles $\triangle s$

 $\angle OAP = \angle APO$ (base \angle s isos. \triangle)

 $\angle OBP = \angle BPO$ (base \angle s isos. \triangle)

In $\triangle OAB$,

 $\angle BAP + \angle ABP + \angle APB = 180^{\circ}$ (\angle sum of Δ)

 $2 \angle APO + 2 \angle BPO = 180^{\circ}$

 $\angle APO + \angle BPO = 90^{\circ}$

 $\angle APB = 90^{\circ}$

Example 1 (HKCEE 1994 Paper 2 Q51)

O

Abbreviation:

∠ in semi-circle

In the figure, ABCD is a semi-circle, CDE and BAE are straight lines. If $\angle CBD = 30^{\circ}$ and $\angle DEA = 22^{\circ}$, find x.

In
$$\triangle ACE$$
, $\angle ACE = x - 22^{\circ}$ (ext. \angle of \triangle)

$$\angle ABD = x - 22^{\circ}$$
 (\angle s in the same segment)

$$\angle ACB = 90^{\circ}$$
 (\angle in semi-circle)

$$22^{\circ} + 2(x - 22^{\circ}) + 90^{\circ} + 30^{\circ} = 180^{\circ}$$
 (\angle sum of Δ)

 $x = 41^{\circ}$

Converse, angle in semi-circle

In the figure, ABP is a right-angled traingle with $\angle APB = 90^{\circ}$.

Then we can draw a circle to pass through A₁B and P with AB as diameter.

Let O be the mid-point of AB. Join OP.

Let M and N be the feet of perpendiculars from O to AB and BP respectively. A

 $\angle MON = 90^{\circ}$ (\angle sum of polygon)

O, M, N, P is a rectangle

OM = NP, ON = MP (opp. sides of rectangle)

 $\Delta POM \cong \Delta OPN$ (R.H.S.)

OM // BP, ON // AP (int. \angle s supp.) AM = MP, BN = NP (intercept theorem)

 $\Delta AOM \cong \Delta POM, \ \Delta OPN \cong \Delta OBM$ (S.A.S.)

 $\therefore \Delta AOM \cong \Delta POM \cong \Delta OPN \cong \Delta OBM$

OA = OP = OB (cor. sides $\cong \Delta s$)

 \therefore We can draw a circle to pass through A B and P with O as centre, i.e. AB is a diameter.

Angles in the same segment

Created by Mr. Francis Hung on 20210922

Last updated: 2021-09-22

In the figure, AB is a chord in a circle, centre at O. D and E are any points on

the same arc \overrightarrow{AB} (either major arc or minor arc). Then $\angle ADB = \angle AEB$.

Let $\angle ADB = x$, $\angle AEB = y$

Join OA, OB.

 $\angle AOB = 2x$ $(\angle$ at cnetre twice \angle at \odot^{ce})

 $(\angle$ at cnetre twice \angle at \bigcirc ^{ce}) $\angle AOB = 2y$

 $\therefore 2x = 2y$

x = yAbbreviation:

 $\angle ADB = \angle AEB$ \angle s in the same seg.

The theorem is proved.

Example 2 (HKCEE 2004 Paper 2 Q23)

In the figure, O is the centre of the circle ABCD. If EAB and EDOC are straight lines and EA = AO, find $\angle AEO$.

Let $\angle ABD = x$

 $\angle AOE = 2x$ $(\angle \text{ at centre} = 2\angle \text{ at } \odot^{\text{ce}})$

 $\angle AEO = 2x$ (base \angle s isos. Δ)

(ext. \angle of Δ) $x + 2x = 36^{\circ}$

 $x = 12^{\circ}$

 $\angle AEO = 24^{\circ}$

