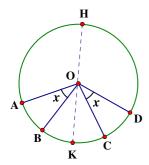
Chords and arcs

Created by Francis Hung on 20210921

Last updated: 26 September 2021



The figure represents two minor arcs \widehat{AB} and \widehat{CD} of a circle passing through A, B, C, D with centre at O, such that $\angle AOB = \angle COD = x$.

If we draw the diameter HOK which bisects $\angle BOC$, it also bisects $\angle AOD$. But the circle is symmetrical about the diameter HOK, therefore, if we fold the figure about HOK, B can be made to coincide with C, and A with D, and the minor arc \widehat{AB} will coincide with the minor arc \widehat{CD} .

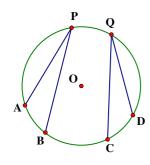
i.e. we have proved: equal angles at centre subtend equal arcs.

Abbreviation: eq. ∠s, eq. arcs.

Conversely, if the arcs $\widehat{AB} = \widehat{CD}$, then we can again fold the figure about HOK, the line of symmetry about \widehat{AB} and \widehat{CD} . Then the line OB will coincide with OC, and that the line OA will coincide with OD. Therefore, the two angles at centre are equal: $\angle AOB = \angle COD$.

i.e. we have proved: equal arcs subtend equal angles at centre.

Abbreviation: eq. arcs, eq. ∠s



Theorem Equal angles at circumference subtend equal arcs.

In the figure,
$$\angle APB = \angle CQD$$
, then $\widehat{AB} = \widehat{CD}$.

Proof: Let O be the centre, join OA, OB, OC and OD.

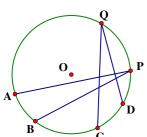
Then
$$\angle APB = \angle CQD$$
 (given)

$$2\angle APB = 2\angle COD$$

$$\angle AOB = \angle COD \ (\angle \text{ at centre twice } \angle \text{ at } \bigcirc^{\text{ce}})$$

$$\therefore \widehat{AB} = \widehat{CD}$$
 (eq. \angle s eq. arcs)

Abbreviation: eq. ∠s eq. arcs

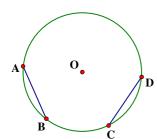


Theorem Equal arcs subtend equal angles at circumference.

In the figure,
$$\widehat{AB} = \widehat{CD}$$
, then $\angle APB = \angle CQD$.

Proof: Exercise

Abbreviation: eq. arcs eq. ∠s



Theorem If $\widehat{AB} = \widehat{CD}$, then AB = CD.

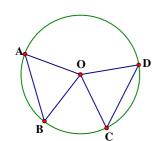
Abbreviation: eq. arcs, eq. chords.

Proof: Let O be the centre, join OA, OB, OC and OD.

$$\Delta OAB \cong \Delta OCD$$
 (S.A.S.)

=

Abbreviation: eq. chords, eq. arcs.



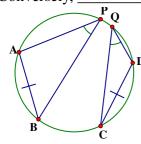
Theorem If AB and CD are equal chords and O is the centre,

then
$$\angle AOB = \angle COD$$
.

Abbreviation: eq. chords eq. ∠s.

Proof: exercise.

Conversely,



Theorem Equal chords subtend equal angles at circumference.

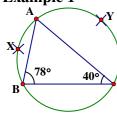
If AB = CD, P and Q are any points on the circumference,

then
$$\angle APB = \angle CQD$$
.

Abbreviation: eq. chords eq. ∠s.

Proof: exercise.

Example 1



X and Y are mid-points of the arcs \widehat{AB} and \widehat{AC} respectively,

find $\angle XAC$ and $\angle BXY$.

$$\angle XAB = \frac{1}{2} \angle ACB = 20^{\circ}$$
 ($\angle \propto arcs$)

$$\angle BAC = 180^{\circ} - 78^{\circ} - 40^{\circ} = 62^{\circ}$$
 (\angle sum of Δ)

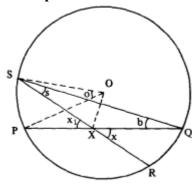
$$\angle XAC = \angle XAB + \angle BAC = 20^{\circ} + 62^{\circ} = 82^{\circ}$$

$$\angle BXC = \angle BAC = 62^{\circ}$$
 (\angle s in the same segment)

$$\angle CXY = \frac{1}{2} \angle CBA = 39^{\circ}$$
 ($\angle \propto arcs$)

$$\angle BXY = \angle BXC + \angle CXY = 62^{\circ} + 39^{\circ} = 101^{\circ}$$

Example 2



In the figure, 2 chords PQ, RS intersect at X, $\widehat{PS} = \widehat{QR}$, O is the centre of the circle. To prove

- (a) $\angle QXR = 2\angle SQX$,
- (b) P, S, O, X are concyclic
- (a) Using the notation in the figure,

$$x = x_1$$
 (vert. opp. \angle s)
 $b + s = x_1$ (ext. \angle of Δ)
 $b = s$ (eq. arcs eq. \angle s)

$$\therefore x = b + s = 2b$$

$$\angle QXR = 2\angle SQX$$

(b)
$$o = 2b$$
 (\angle at centre twice \angle at \odot ^{ce}) $x = 2b$ (proved in (a)) $\therefore o = x$

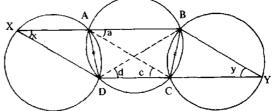
P, S, O, X are concyclic (converse, \angle s in the same seg.)

(opp. sides //)

Example 3

In the figure, three equal circles cutting A, D and B, C respectively such that chords AD = BC, XAB and DCY are straight lines. To prove XBYD is a //-gram.

Join AC, DB. Let
$$\angle BAC = a$$
, $\angle ACD = c$, $\angle BDC = d$, $\angle AXD = x$, $\angle BYC = y$.

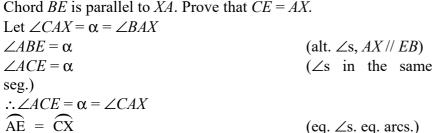


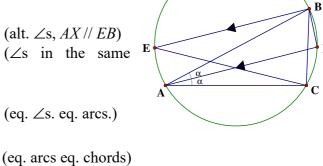
$$a = c$$
 (eq. chords eq. \angle s)
 $XAB // DCY$ (alt. \angle s eq.)
 $\angle ABD = x = d = y$ (eq. chords eq. \angle s)
 $\angle BDX = 180^{\circ} - 2x = 180^{\circ} - 2y = \angle YBD$ (\angle sum of Δ)
 $XD // BY$ (alt. \angle eq.)

Example 4

∴ *XDBY* is a //-gram

In the figure, AB and AC are the chords of a circle so that $\angle BAC$ is acute and BA > AC. The bisector of $\angle BAC$ meets the circle at X. Chord BE is parallel to XA. Prove that CE = AX.





$\therefore CE = AX$ Method 2

CE = AX

CAE = ACX

Method 2

Let
$$\angle CAX = \alpha = \angle BAX$$
 $\angle ABE = \alpha$ (alt. $\angle s$, $AX // EB$)

 $\angle ACE = \alpha$ ($\angle s$ in the same seg.)

 $\therefore \angle ACE = \alpha = \angle CAX$
 $AC = AC$ (common side)

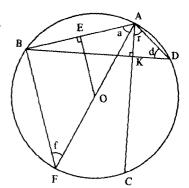
 $\angle AEC = \angle AXC$ ($\angle s$ in the same segment)

 $\triangle ACE \cong \triangle ACX$ ($\angle s$ in the same segment)

(corr. sides $\cong \Delta s$)

Example 5

In the figure, *O* is the centre of the circle *ABCD*, chords $AC \perp BD$ at *K*, $OE \perp AB$ at *E*. Prove that $OE = \frac{1}{2}CD$.



$$\angle ABF = 90^{\circ} \qquad (\angle \text{ in semi-circle})$$

$$EO \parallel BF \qquad (\text{int. } \angle \text{ supp})$$

$$\Delta AEO \sim \Delta ABF \qquad (\text{equiangular})$$

$$AO = OF \qquad (\text{radii})$$

$$OE = \frac{1}{2}BF \cdots (1) \qquad (\text{cor. sides, } \sim \Delta s)$$

$$d = f(\angle s \text{ in the same segment})$$

$$a = 180^{\circ} - 90^{\circ} - f = 90^{\circ} - f \qquad (\angle \text{ sum of } \Delta ABF)$$

$$r = 180^{\circ} - 90^{\circ} - d = 90^{\circ} - d \qquad (\angle \text{ sum of } \Delta ADK)$$

$$\therefore a = r$$

$$CD = BF \qquad (\text{eq. } \angle \text{s eq. chords})$$

$$OE = \frac{1}{2}CD \text{ (by (1))}$$