Chords and arcs Created by Francis Hung on 20210921 Last updated: 26 September 2021 The figure represents two minor arcs \widehat{AB} and \widehat{CD} of a circle passing through A, B, C, D with centre at O, such that $\angle AOB = \angle COD = x$. If we draw the diameter HOK which bisects $\angle BOC$, it also bisects $\angle AOD$. But the circle is symmetrical about the diameter HOK, therefore, if we fold the figure about HOK, B can be made to coincide with C, and A with D, and the minor arc \widehat{AB} will coincide with the minor arc \widehat{CD} . i.e. we have proved: equal angles at centre subtend equal arcs. Abbreviation: eq. ∠s, eq. arcs. Conversely, if the arcs $\widehat{AB} = \widehat{CD}$, then we can again fold the figure about HOK, the line of symmetry about \widehat{AB} and \widehat{CD} . Then the line OB will coincide with OC, and that the line OA will coincide with OD. Therefore, the two angles at centre are equal: $\angle AOB = \angle COD$. i.e. we have proved: equal arcs subtend equal angles at centre. Abbreviation: eq. arcs, eq. ∠s **Theorem** Equal angles at circumference subtend equal arcs. In the figure, $$\angle APB = \angle CQD$$, then $\widehat{AB} = \widehat{CD}$. Proof: Let O be the centre, join OA, OB, OC and OD. Then $$\angle APB = \angle CQD$$ (given) $$2\angle APB = 2\angle COD$$ $$\angle AOB = \angle COD \ (\angle \text{ at centre twice } \angle \text{ at } \bigcirc^{\text{ce}})$$ $$\therefore \widehat{AB} = \widehat{CD}$$ (eq. \angle s eq. arcs) Abbreviation: eq. ∠s eq. arcs **Theorem** Equal arcs subtend equal angles at circumference. In the figure, $$\widehat{AB} = \widehat{CD}$$, then $\angle APB = \angle CQD$. Proof: Exercise Abbreviation: eq. arcs eq. ∠s **Theorem** If $\widehat{AB} = \widehat{CD}$, then AB = CD. Abbreviation: eq. arcs, eq. chords. Proof: Let O be the centre, join OA, OB, OC and OD. $$\Delta OAB \cong \Delta OCD$$ (S.A.S.) = Abbreviation: eq. chords, eq. arcs. **Theorem** If AB and CD are equal chords and O is the centre, then $$\angle AOB = \angle COD$$. Abbreviation: eq. chords eq. ∠s. Proof: exercise. Conversely, Theorem Equal chords subtend equal angles at circumference. If AB = CD, P and Q are any points on the circumference, then $$\angle APB = \angle CQD$$. Abbreviation: eq. chords eq. ∠s. Proof: exercise. #### Example 1 X and Y are mid-points of the arcs \widehat{AB} and \widehat{AC} respectively, find $\angle XAC$ and $\angle BXY$. $$\angle XAB = \frac{1}{2} \angle ACB = 20^{\circ}$$ ($\angle \propto arcs$) $$\angle BAC = 180^{\circ} - 78^{\circ} - 40^{\circ} = 62^{\circ}$$ (\angle sum of Δ) $$\angle XAC = \angle XAB + \angle BAC = 20^{\circ} + 62^{\circ} = 82^{\circ}$$ $$\angle BXC = \angle BAC = 62^{\circ}$$ (\angle s in the same segment) $$\angle CXY = \frac{1}{2} \angle CBA = 39^{\circ}$$ ($\angle \propto arcs$) $$\angle BXY = \angle BXC + \angle CXY = 62^{\circ} + 39^{\circ} = 101^{\circ}$$ #### Example 2 In the figure, 2 chords PQ, RS intersect at X, $\widehat{PS} = \widehat{QR}$, O is the centre of the circle. To prove - (a) $\angle QXR = 2\angle SQX$, - (b) P, S, O, X are concyclic - (a) Using the notation in the figure, $$x = x_1$$ (vert. opp. \angle s) $b + s = x_1$ (ext. \angle of Δ) $b = s$ (eq. arcs eq. \angle s) $$\therefore x = b + s = 2b$$ $$\angle QXR = 2\angle SQX$$ (b) $$o = 2b$$ (\angle at centre twice \angle at \odot ^{ce}) $x = 2b$ (proved in (a)) $\therefore o = x$ P, S, O, X are concyclic (converse, \angle s in the same seg.) (opp. sides //) # Example 3 In the figure, three equal circles cutting A, D and B, C respectively such that chords AD = BC, XAB and DCY are straight lines. To prove XBYD is a //-gram. Join AC, DB. Let $$\angle BAC = a$$, $\angle ACD = c$, $\angle BDC = d$, $\angle AXD = x$, $\angle BYC = y$. $$a = c$$ (eq. chords eq. \angle s) $XAB // DCY$ (alt. \angle s eq.) $\angle ABD = x = d = y$ (eq. chords eq. \angle s) $\angle BDX = 180^{\circ} - 2x = 180^{\circ} - 2y = \angle YBD$ (\angle sum of Δ) $XD // BY$ (alt. \angle eq.) ## Example 4 ∴ *XDBY* is a //-gram In the figure, AB and AC are the chords of a circle so that $\angle BAC$ is acute and BA > AC. The bisector of $\angle BAC$ meets the circle at X. Chord BE is parallel to XA. Prove that CE = AX. # $\therefore CE = AX$ Method 2 CE = AX CAE = ACX Method 2 Let $$\angle CAX = \alpha = \angle BAX$$ $\angle ABE = \alpha$ (alt. $\angle s$, $AX // EB$) $\angle ACE = \alpha$ ($\angle s$ in the same seg.) $\therefore \angle ACE = \alpha = \angle CAX$ $AC = AC$ (common side) $\angle AEC = \angle AXC$ ($\angle s$ in the same segment) $\triangle ACE \cong \triangle ACX$ ($\angle s$ in the same segment) (corr. sides $\cong \Delta s$) ## Example 5 In the figure, *O* is the centre of the circle *ABCD*, chords $AC \perp BD$ at *K*, $OE \perp AB$ at *E*. Prove that $OE = \frac{1}{2}CD$. $$\angle ABF = 90^{\circ} \qquad (\angle \text{ in semi-circle})$$ $$EO \parallel BF \qquad (\text{int. } \angle \text{ supp})$$ $$\Delta AEO \sim \Delta ABF \qquad (\text{equiangular})$$ $$AO = OF \qquad (\text{radii})$$ $$OE = \frac{1}{2}BF \cdots (1) \qquad (\text{cor. sides, } \sim \Delta s)$$ $$d = f(\angle s \text{ in the same segment})$$ $$a = 180^{\circ} - 90^{\circ} - f = 90^{\circ} - f \qquad (\angle \text{ sum of } \Delta ABF)$$ $$r = 180^{\circ} - 90^{\circ} - d = 90^{\circ} - d \qquad (\angle \text{ sum of } \Delta ADK)$$ $$\therefore a = r$$ $$CD = BF \qquad (\text{eq. } \angle \text{s eq. chords})$$ $$OE = \frac{1}{2}CD \text{ (by (1))}$$