Created by Francis Hung on 2021092

Theorem 1 In the figure, AB is a chord in the circle with centre O, M is the mid-point of AB.

To prove $\angle OMA$ is a right angle.

Join OA, OB. AM = MB (given) OA = OB (radii) OM = OM (common sides) $\triangle OMA \cong \triangle OMB$ (S.S.S.) $\angle OMA = \angle OMB$ (corr. $\angle s \cong \triangle s$) $\angle OMA + \angle OMB = 180^{\circ}$ (adj. $\angle s$ on st. line) $2 \angle OMA = 90^{\circ}$

Abbreviation: line joining centre to mid-point of chord \perp chord

Theorem 2 The straight line drawn from the centre of a circle perpendicular to a chord bisects the chord. (This the converse of theorem 1)

In the figure, AB is a chord in the circle with centre O, $ON \perp AB$. To prove AN = NB.

Join OA, OB.

OA = OB (radii)

OM = OM (common sides)

 $ON \perp AB$ (given) $\Delta ONA \cong \Delta ONB$ (R.H.S.)

AN = NB (corr. sides $\cong \Delta s$)

Abbreviation: line from centre \(\perp \) chord bisects chord

Corollary The perpendicular bisector of a chord of a circle passes through the centre of the circle.

In the figure, AB is a chord in the circle with centre O, PMQ is the perpendicular bisector of AB (M lies on AB). To prove O lies on PQ.

Join *OM*.

AM = MB (definition of PMB as a \bot bisector of chord AB) $OM \bot AB$ (line joining centre to mid-point of chord \bot chord) $PM \bot AB$ (definition of PMB as a \bot bisector of chord AB)

 $\therefore PM // OM$ (corr. \angle s eq.)

 \therefore Both *PM* and *OM* pass through *M*

∴PM and OM overlaps each other.

i.e. O lies on PO

Abbreviation: \(\perp \) bisector of chord passes through centre

Theorem 3 If two chords of a circle are equal, then they are equidistant from the centre

In the figure, $OM \perp AB$, $ON \perp CD$ and AB = CD. To prove: OM = ON. Proof: Join OA, OC.

$$OA = OC$$
 (radii)
 $\angle AMO = \angle CNO$ (given)

$$AM = \frac{1}{2}AB$$
 (line from centre \perp chord bisects chord)

$$= \frac{1}{2}CD$$
 (given)
= AN

$$\therefore \Delta OAM \cong \Delta OCN \qquad (R.H.S.)$$

$$OM = ON$$
 (corr. side $\cong \Delta s$)

Abbreviation: eq. chords are equidistant from centre

Theorem 4 If two chords of a circle are equidistant from the centre, their lengths are equal

In the figure, $OM \perp AB$, $ON \perp CD$ and OM = ON. To prove AB = CD.

$$OA = OC$$
 (radii)
 $OM \perp AB$, $ON \perp CD$ (given)
 $OM = ON$ (given)
 $\Delta OMA \cong \Delta ONC$ (R.H.S.)

AM = CN (corr. sides, $\cong \Delta s$)

2AM = 2CN

AB = CD (line from centre \perp chord bisects chord)

Abbreviation: chords equidistant from centre are eq

Example 1

In the figure, CD is the diameter of a circle, centre at O. AB is a perpendicular chord intersecting CD at E. Given that AE = 6, CE = 9, find the radius of the circle.

Join AD and BC.

AE = EB = 6 (line from centre \perp chord bisects chord)

 $\angle AED = \angle CEB = 90^{\circ}$ (vert. opp. $\angle s$)

 $\angle EAD = \angle BCE$ (\angle s in the same segment) $\angle ADE = \angle CBE$ (\angle s in the same segment)

 $\Delta ADE \sim \Delta CBE$ (equiangular) AE : DE = CE : EB (corr. sides, $\sim \Delta s$)

6: DE = 9:6

DE = 4

CD = CE + ED = 4 + 9 = 13

Radius = $CD \div 2 = 6.5$

Example 2

In the figure, ABC, OEA are straight lines. ACDE is a rectangle. B and D are points on a circle centre at O, AC = 13, BC = 9, CD = 3. Find OA and OB.

Solution:

Let
$$OE = x$$
, $OB = OD = r$.
 $AE = CD = 3$, $DE = CA = 13$ (opp. sides of rectangle)
 $OA = x + 3$, $AB = 13 - 9 = 4$
In $\triangle OAB$,
 $(x + 3)^2 + 4^2 = r^2 \cdots (1)$ (Pythagoras' theorem)
In $\triangle ODE$,
 $x^2 + 13^2 = r^2 \cdots (2)$ (Pythagoras' theorem)
 $(1) = (2)$: $6x + 9 + 16 = 169$
 $x = 24$
Sub. $x = 24$ into (2) : $r^2 = 24^2 + 13^2 = 745$
 $r = \sqrt{745}$
 $\therefore OA = 24 + 3 = 27$
 $OB = r = \sqrt{745}$