Intersecting chord theorems and other theorems on circles

Created by Francis Hung on 15 May 2010

Last updated: 22 September 2021

Theorem 1 (Intersecting chords theorem) AB and CD are two chords intersecting at a point K inside the circle.

If AK = a, BK = b, CK = c, DK = d, then ab = cd.

Proof: $\angle KAC = \angle KDB$ (\angle in the same segment)

 $\angle KCA = \angle KBD$ (\angle in the same segment)

 $\angle AKC = \angle DKB$ (vert. opp. angles)

 $\Delta AKC \sim \Delta DKB$ (equiangular)

 $\frac{a}{d} = \frac{c}{b}$ (corr. of sides, $\sim \Delta s$)

ab = cd

Hence results follow.

Note that its **converse** is also true.

Theorem 2 (Intersecting chords theorem) AB and CD are

two chords intersecting at a point *K* outside the circle.

If
$$AK = a$$
, $BK = b$, $CK = c$, $DK = d$, then $ab = cd$.

Proof: $\angle KAD = \angle KCB$ (ext. \angle , cyclic quad.)

 $\angle KDA = \angle KBC$ (ext. \angle , cyclic quad.)

 $\angle AKD = \angle CKB \text{ (common } \angle)$

 $\Delta AKD \sim \Delta CKB$ (equiangular)

$$\frac{a}{c} = \frac{d}{b}$$
 (corr. sides, $\sim \Delta s$)

ab = cd

Hence results follow.

Note that its **converse** is also true.

Theorem 3 (Intersecting chords theorem)

Chord AB produced and the tangent at C intersect at a point K.

If
$$AK = a$$
, $BK = b$, $CK = c$, then $ab = c^2$.

Proof: $\angle BCK = \angle CAK \ (\angle \text{ in alt. seg.})$

$$\angle BKC = \angle CKA \text{ (common } \angle)$$

$$\angle CBK = \angle ACK \ (\angle \text{sum of } \Delta)$$

 $\Delta CKB \sim \Delta AKC$ (equiangular)

$$\frac{a}{c} = \frac{c}{b}$$
 (corr. sides, $\sim \Delta s$)

$$ab = c^2$$

Hence results follow.

Note that its **converse** is also true.

Theorem 4 Let \widehat{AC} and \widehat{BD} be two equal arcs. Then $AB \parallel CD$. **Proof:** Join AD.

$$\angle ADC = \angle BAD$$
 (eq. arcs eq. \angle s)
 $AB \parallel CD$ (alt. \angle eq.)

Theorem 5 In $\triangle ABC$, M is the mid point of AB. CM meets the circumcircle ABC at D. Then $AC \cdot AD = BC \cdot BD$

Let E be the foot of perpendicular drawn from B onto CD.

$$AM = MB$$
 (given)

$$\angle AFM = \angle BEM = 90^{\circ}$$
 (by construction)
 $\angle AMF = \angle BME$ (vert. opp. $\angle s$)

$$\Delta AFM \cong \Delta BEM$$
 (A.A.S.)

$$AF = BE$$
 (corr. sides $\cong \Delta s$)

Area of
$$\triangle ACD = \frac{1}{2}AC \cdot AD \sin \angle CAD$$

$$= \frac{1}{2}CD \cdot AF$$

$$= \frac{1}{2}CD \cdot BE$$

$$= Area of \triangle BCD$$

$$= \frac{1}{2}BC \cdot BD \sin \angle CBD$$

$$\therefore \frac{1}{2}AC \cdot AD \sin \angle CAD = \frac{1}{2}BC \cdot BD \sin \angle CBD$$

$$\therefore$$
 sin $\angle CAD = \sin(180^{\circ} - \angle CBD) = \sin \angle CBD$ (opp. \angle s, cyclic quad.)

$$AC \cdot AD = BC \cdot BD$$

Theorem 6 In $\triangle ABC$, the angle bisector of $\angle A$ cuts BC at D and also the circumcircle ABC at E. Prove that $AB \cdot AC = AD \cdot AE$

Proof: Let
$$\angle BAE = \theta = \angle CAE$$
 (\angle bisector)

$$\angle ACD = \alpha = \angle AEB$$
 (\(\angle \text{ sin the same seg.}\)

$$\angle ABE = \angle ADC$$
 (\angle sum of \triangle)

$$\triangle ABE \sim \triangle ADC$$
 (equiangular)

$$\frac{AB}{AE} = \frac{AD}{AC}$$
 (corr. sides, ~\Deltas)

$$\Rightarrow AB \cdot AC = AD \cdot AE$$

Theorem 7 Given an equilateral $\triangle ABC$. *P* is a point outside $\triangle ABC$ such that $\angle BPC = 120^{\circ}$.

Prove that (a) AP = BP + PC

(b) If AP intersects BC at D, then $\frac{1}{PB} + \frac{1}{PC} = \frac{1}{PD}$.

Remark: the theorem is extracted from

1972 中文中學會考 高級數學 試卷二 Q8

Proof: we have several methods in proving (a).

Method 1 ::
$$\angle BAC = 60^{\circ}$$
, $\angle BPC = 120^{\circ}$

$$\angle BAC + \angle BPC = 60^{\circ} + 120^{\circ} = 180^{\circ}$$

ABPC is a cyclic quad. (opp. ∠s supp.)

Construct the circumcircle *ABPC*.

Produce PC to E so that BP = CE

$$AB = AC$$
 (sides of an equilateral Δ)

$$\angle ABP = \angle ACE$$
 (ext. \angle , cyclic quad.)

$$\therefore \Delta ABP \cong \Delta ACE \qquad (S.A.S.)$$

$$AP = AE$$
 (corr. sides $\cong \Delta s$)

$$\angle PAE = \angle PAC + \angle CAE$$

= $\angle PAC + \angle BAP$ (corr. $\angle s$, $\cong \Delta s$)
= $\angle BAC = 60^{\circ}$

 $\therefore \Delta APE$ is an equilateral Δ .

$$PE = PA$$
 (sides of an equilateral Δ)

$$PC + CE = PA$$

$$PB + PC = PA$$
 by construction

Method 2 As in method 1, draw the circumcircle *ABPC*.

$$\angle APC = \angle APB$$
 (eq. chords. eq. \angle s)
= $\frac{120^{\circ}}{2} = 60^{\circ}$

Let Q be a point on AP such that $\angle ACQ = \theta = \angle BCP$ $\angle QCP = \angle QCB + \theta = \angle ACB = 60^{\circ}$

 $\therefore \Delta QCP$ is an equilateral Δ .

$$PC = QC$$
 (sides of an equilateral Δ)

$$AC = BC$$
 (sides of an equilateral Δ)

$$\angle ACQ = \theta = \angle BCP$$

$$\therefore \Delta ACQ \cong \Delta BCP \qquad (S.A.S.)$$

$$AQ = BP$$
 (corr. sides, $\cong \Delta s$)

$$PA = AQ + QP = PB + CP$$

Method 3 As in method 2, draw the circumcircle ABPC. Let $\angle ABP = \alpha$, $\angle ACP = \beta$, $\angle BAP = \theta$, $\angle CAP = 60^{\circ} - \theta$ $\alpha + \beta = 180^{\circ}$ (opp. \angle s, cyclic quad.) $\Rightarrow \sin \alpha = \sin \beta \cdots (1)$ $\alpha + \theta + 60^{\circ} = 180^{\circ}$ (\angle s sum of $\triangle ABP$) $\Rightarrow \alpha = 90^{\circ} + 30^{\circ} - \theta \cdots (2)$ Apply sine formula on $\triangle ABP$ and $\triangle ACD$. $\frac{PA}{d\alpha} = \frac{PB}{d\alpha} \Rightarrow PB = \frac{PA}{d\alpha} \sin \theta \cdots (3)$

$$\frac{PA}{\sin\alpha} = \frac{PB}{\sin\theta} \Rightarrow PB = \frac{PA}{\sin\alpha} \sin\theta \quad \cdots (3)$$

$$\frac{PA}{\sin\beta} = \frac{PC}{\sin(60^{\circ} - \theta)} \Rightarrow PC = \frac{PA}{\sin\beta} \sin(60^{\circ} - \theta) \quad \cdots (4)$$

$$(3) + (4): PB + PC = \frac{PA}{\sin\alpha} \sin\theta + \frac{PA}{\sin\beta} \sin(60^{\circ} - \theta)$$

$$= \frac{PA}{\sin\alpha} \left[\sin\theta + \sin(60^{\circ} - \theta) \right] \quad \text{by (1)}$$

$$= \frac{PA}{\sin(90^{\circ} + 30^{\circ} - \theta)} \left[2\sin 30^{\circ} \cos(30^{\circ} - \theta) \right]$$

$$= \frac{PA}{\cos(30^{\circ} - \theta)} \left[\cos(30^{\circ} - \theta) \right]$$

$$= PA$$

$$(PB + PC) \cdot PD = PD \cdot PA \cdot \cdots \cdot (1)$$

 \therefore PA is the \angle bisector of \angle BPC.

By theorem 6,
$$PB \cdot PC = PD \cdot PA$$

Sub. into (1), $(PB + PC) \cdot PD = PB \cdot PC$

$$\frac{1}{PB} + \frac{1}{PC} = \frac{1}{PD}.$$

