Cyclic quadrilateral

Created by Francis Hung on 20110424

Theorem The opposite angles of a cyclic quadrilateral are supplementary. Abbreviation: opp. ∠s cyclic quad.

The **theorem** says that a quadrilateral *ABCD*

is inscribed in a circle, then

$$\angle A + \angle C = 180^{\circ}$$
 and $\angle B + \angle D = 180^{\circ}$

Proof: Let *O* be the centre of the circle.

Join the radii OA, OB, OC and OD.

Let
$$\angle OAB = \angle OBA = x$$

(base
$$\angle$$
s, isos. Δ)

$$\angle OBC = \angle OCB = y$$

(base
$$\angle$$
s, isos. Δ)

$$\angle OCD = \angle ODC = z$$

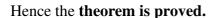
(base
$$\angle$$
s, isos. Δ)

$$\angle ODA = \angle OAD = t$$

(base
$$\angle$$
s, isos. Δ)

$$2x + 2y + 2z + 2t = 360^{\circ}$$

$$x + y + z + t = 180^{\circ}$$
 (1)


$$(x + t) + (y + z) = 180^{\circ}$$

$$\angle A + \angle C = 180^{\circ}$$

Rearrange (1),

$$(x + y) + (t + z) = 180^{\circ}$$

$$\angle B + \angle D = 180^{\circ}$$

If AD is produced to E.

Then $\angle CDE$ is called the **exterior angle** of the cyclic quadrilateral.

 $\angle ABC$ is the interior opposite angle to $\angle CDE$.

Theorem $\angle CDE = \angle ABC$ (i.e. (x = y)

Proof:
$$\angle B + \angle ADC = 180^{\circ}$$

(opp.
$$\angle$$
s, cyclic quad.) ····· (2)

$$y + \angle ADC = 180^{\circ}$$

(adj.
$$\angle$$
s on st. line) (3)

$$(3) - (2)$$
: $x = y$

$$\therefore \angle CDE = \angle ABC$$

The theorem is proved.

Example 1 (HKCEE 1984 Paper 2 Q54)

In the figure, the chords BA and CD, when produced, meet at P. The chords AD and BC, when produced, meet at O. Find $\angle B$.

Let
$$\angle B = x$$
.

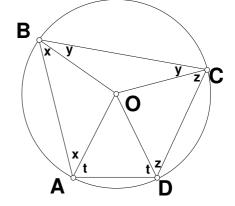
$$\angle PAQ = x + 30^{\circ} = \angle PAD$$

(ext.
$$\angle$$
 of Δ)

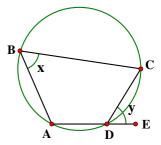
$$\angle BCP = 180^{\circ} - x - 40^{\circ}$$


$$(\angle \text{ sum of } \Delta BCP)$$

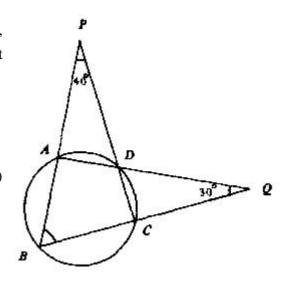
$$\angle PAD = \angle BCD$$


=
$$140^{\circ} - x = \angle BCD$$

= $\angle BCD$ (ext. \angle , cyclic quad.)


$$x + 30^{\circ} = 140^{\circ} - x$$

$$x = 55^{\circ}$$


Last updated: 22 September 2021

Abbreviation:

ext. ∠, cyclic quad.

