## Right-angled triangle & equilateral triangle

Created by Mr. Francis Hung on 20230803. Last updated: 2023-08-03.



In Figure A, an equilateral triangle ABC is inscribed in a circle of radius 12. M is the mid-point of  $\overrightarrow{AB}$  and N is the mid-point of  $\overline{AC}$ . P is a point on BC such that  $\angle MNP = 90^{\circ}$ . Find the area of  $\triangle MNP$ . **Solution (Figure B):** 

$$\angle ABC = \angle ACB = \angle CAB = 60^{\circ}$$

(property of equilateral triangle)

Join BN and BM. Then BN is the median of the equilateral triangle ABC.

 $BN \perp AC$ 

(property of isosceles triangle, AB = BC)

 $\therefore$  BN is the  $\perp$  bisector of AC

(:: N is the mid-point of AC)

 $\angle ABN = \angle CBN = 30^{\circ}$ 

(property of isosceles triangle, AB = BC)

Let O be the centre of the circle ABC. Join OA, OC and OM.

Then BN passes through O. i.e. B, O, N are collinear ( $\perp$  bisector of chord must pass through centre)

$$\angle ABM = \frac{1}{2} \angle ACB = 30^{\circ}$$

(M is the mid-point of  $\widehat{AB}$ )

$$\angle MBP = \angle ABM + \angle ABC = 30^{\circ} + 60^{\circ} = 90^{\circ}$$

$$\angle OBM = \angle ABM + \angle ABO = 30^{\circ} + 30^{\circ} = 60^{\circ}$$

$$\angle OBM = \angle ABM + \angle ABO = 30^{\circ} + 30^{\circ} = 60^{\circ}$$
  
 $OB = OM = OA = 12$ 

$$OD - OM - OA - 12$$

(radii) (base 
$$\angle$$
s isos.  $\Delta$ )

$$\angle OMB = \angle OBM = 60^{\circ}$$

(base 
$$\angle$$
s isos.  $\triangle$ )

In 
$$\triangle OBM$$
,  $\angle BOM = 180^{\circ} - 60^{\circ} - 60^{\circ} = 60^{\circ}$   
 $\angle MON = 180^{\circ} - \angle BOM = 120^{\circ}$ 

$$(\angle \text{sum of } \Delta)$$

$$\angle MON = 180^{\circ} - \angle BOM = 1$$

(adj. ∠s on st. line)

$$\angle BAO = \angle CAO = 30^{\circ}$$

(: O is the centroid of  $\triangle ABC$ )

In 
$$\triangle AON$$
,  $\sin 30^\circ = \frac{ON}{OA} \Rightarrow ON = 6$ 

In 
$$\triangle MON$$
,  $MN^2 = 12^2 + 6^2 - 2 \times 12 \times 6 \times \cos 120^\circ = 252$ 

$$MN = 6\sqrt{7}$$

$$\angle MNP + \angle MBP = 90^{\circ} + 90^{\circ} = 180^{\circ}$$

$$\therefore M, B, P, N$$
 are concylcic

$$\angle NMP = \angle NBP = 30^{\circ}$$

 $(\angle s \text{ in the same segment})$ 

In 
$$\triangle MNP$$
, tan  $30^\circ = \frac{NP}{MN} \Rightarrow NP = \frac{6\sqrt{7}}{\sqrt{3}}$ 

Area of 
$$\triangle MNP = \frac{1}{2}MN \times NP = \frac{1}{2} \times 6\sqrt{7} \times \frac{6\sqrt{7}}{\sqrt{3}} = 42\sqrt{3}$$