Last updated: 03 September 2021

1968 Certificate of Education Examination (Chinese) General Mathematics Paper 2 Section B Q13(b)

In the figure, ABCD is a quadrilateral. Four circles with centres X, Y, Z and W touch 3 sides of ABCD. Prove that X, Y, Z and W are concyclic.

Solution: Suppose X is the centre of circle touching BC, AB and DA respectively. Then it can be easily proved that AX, BX are the angle bisectors of $\angle A$ and $\angle B$ respectively. Similarly, WC and YD are the angle bisectors of $\angle C$ and $\angle D$ respectively.

Let
$$\angle XAD = \angle XAB = a$$
, $\angle XBA = \angle XBC = b$, $\angle WCB = \angle WCD = c$, $\angle YDC = \angle YDA = d$
 $\angle BWC = 180^{\circ} - b - c$; $\angle AYD = 180^{\circ} - a - d$ (\angle sum of Δ)
 $\angle XWZ + \angle XYZ = 180^{\circ} - b - c + 180^{\circ} - a - d$
 $= 360^{\circ} - (a + b + c + d)$
 $= 360^{\circ} - 180^{\circ}$ (\angle sum of polygon)
 $= 180^{\circ}$

 $\therefore X, Y, Z \text{ and } W \text{ are concyclic. (opp. } \angle \text{s supp.)}$