Concyclic points Example 3

1972 General Mathematics Syllabus 1 (Chinese) Paper 2 Q10

Created by Francis Hung

Last updated: 03 September 2021

The figure shows two concentric circles with a common centre O. A and B are two points on the outer circle. AC and BD touch the inner circle at C and D respectively. AB and CD intersect at X. Prove that

- (a) AC = BD.
- (b) $\triangle OAB \sim \triangle OCD$.
- (c) CD bisects AB at X.
- (a) OC = OD; OA = OB (same radii)

$$\angle OCA = \angle ODB = 90^{\circ}$$
 (tangent \perp radius)

$$\Delta OAC \cong \Delta OBD$$
 (R.H.S.)

$$AC = BD$$
 (corr. sides $\cong \Delta s$)

(b) OA : OC = OB : OD (same radii)

$$\angle AOB = \angle AOC + \angle COB = \angle COB + \angle BOD \text{ (corr. } \angle s \cong \Delta s)$$

= $\angle COD$

 $\triangle OAB \sim \triangle OCD$ (2 sides proportional, 1 included \angle , S.A.S.)

(c)
$$\angle OBA = \angle ODC$$
 (corr. $\angle s$, $\sim \Delta s$)

O, X, B, D are concyclic. (converse, \angle s in the same segment)

$$\angle OXB + \angle ODB = 180^{\circ}$$
 (opp. \angle s, cyclic quad.)

$$\angle OXB = 90^{\circ}$$

AX = XB (\perp from centre bisect chord)

CD bisects AD at X.