Created by Francis Hung

In $\triangle ABC$, the angle bisector of $\angle BAC$ and the perpendicular bisector of BC intersect at D, M is the mid-point of BC. If $AB \neq AC$, prove that ABDC is a cyclic quadrilateral.

Let
$$\angle BAD = \theta = \angle CAD$$
.

$$BM = MC, BC \perp MD$$

$$\angle BAC = 2\theta$$

It is easy to show that $\triangle BMD \cong \triangle CMD$ (S.A.S.)

$$\therefore BD = CD \text{ (corr. sides } \cong \Delta s)$$

 ΔBCD is isosceles (2 sides equal)

Let
$$\angle DBM = \alpha = \angle DCM$$
 (base \angle s isos. Δ)

$$\frac{AD}{\sin(\alpha + B)} = \frac{BD}{\sin \theta}$$
 and $\frac{AD}{\sin(\alpha + C)} = \frac{CD}{\sin \theta}$ (sine rule on $\triangle ABD$ and $\triangle ACD$)

$$\therefore BD = CD$$

$$\therefore \frac{AD}{\sin(\alpha+B)} = \frac{BD}{\sin\theta} = \frac{AD}{\sin(\alpha+C)}$$

$$\sin(\alpha + B) = \sin(\alpha + C)$$

$$\alpha + B = \alpha + C$$
 or $\alpha + B + \alpha + C = 180^{\circ}$

$$\therefore B \neq C \therefore \angle ABD + \angle ACD = 180^{\circ}$$

ABDC is a cyclic quadrilateral (opp. ∠s supp.)

Remark:

If AB = AC, then the angle bisector and

the perpendicular bisector will overlap.

They will intersect at infinitely many points.

We can find infinitely many points D_1, D_2, \cdots

A, B, D, C are not necessary concyclic.

Method 2

Let the circumcentre be O. Let E be the projection of A on

BC. Join OA, AE, OB. Let $\angle ODA = x$.

$$\angle DAE = x$$
 (alt. $\angle s$, $OD // AE$)

$$\angle CAE = \theta - x$$

$$\angle ACE = 90^{\circ} - \theta + x (\angle \text{ sum of } \Delta)$$

$$\angle AOB = 2\angle ACE \ (\angle \text{ at centre twice } \angle \text{ at } \odot^{\text{ce}})$$

= $180^{\circ} - 2\theta + 2x$

$$OA = OB = \text{radii}$$

$$\angle OAB = (180^{\circ} - \angle AOB) \div 2 \ (\angle \text{ sum of } \Delta)$$

= $\theta - x$

$$\angle OAD = \angle BAD - \angle OAB = x$$

$$\therefore \angle ODA = \angle OAD$$

$$OA = OD$$
 (sides opp. eq. \angle s)

So
$$OA = OB = OC = OD$$

A, B, C, D are concyclic.

