Angle in alternate segment Created by Mr. Francis Hung on 20210926 Tangent-chord, tangent-chord segments, angles in tangent-chord segment. AB is a tangent to the circle at P PQ is a chord, called the tangent chord. The tangent-chord PQ divides the circle into two segments PSO PTQcalled and tangent-chord segments. Last updated: 2021-09-26 Tangent-chord angles refer to $\angle APQ = \alpha \text{ or } \angle BPQ = \beta.$ Segment PTO alternate segment corresponding in to $\angle APQ = \alpha$. lies on the Similarly, segment PSQ opposite side of $\angle APQ$, Hence, on the opposite side of $\angle BPQ$, $\angle PTQ$ is called an angle in Hence, $\angle PSQ$ is called an angle alternate segment corresponding to $\angle BPQ = \beta$. **Theorem 1** A tangent-chord angle of a circle is equal to an angle in the alternate segment. In the figure, AB is a tangent at P. To prove $\alpha = x$, $\beta = y$. Abbreviation: ∠ in alt. segment Proof: Let the centre be *O*. $$\angle PNQ = \angle PTQ = x$$ $(\angle s \text{ in the same segment})$ $$\angle PON = 90^{\circ}$$ (∠ in semi-circle) $$\angle NPQ = 180^{\circ} - 90^{\circ} - x = 90^{\circ} - x \ (\angle \text{ sum of } \Delta)$$ $$\alpha + \angle NPQ = 90^{\circ}$$ (tangent \perp radius) $$\alpha = x$$ $$x + y = 180^{\circ}$$ (opp. \angle s, cyclic quad.) $$\alpha + \beta = 180^{\circ}$$ (adj. \angle s on st. line) $$\therefore \beta = y$$ **Theorem 2** In the figure, given the circle PQT. $\angle BPT = \angle PQT = x$. To prove BP is a tangent at P. Abbreviation: Converse, \angle in alt. segment Proof: Let the centre be *O*. Draw the diameter PON. Join *QN*. $$\angle PON = 90^{\circ}$$ (∠ in semi-circle) $$\angle NOT = 90^{\circ} - x$$ $$\angle NPT = \angle NQT = 90^{\circ} - x$$ $(\angle s \text{ in the same segment})$ $$\angle NPT + \angle BPT = 90^{\circ} - x + x = 90^{\circ}$$ $\therefore PB$ is a tangent at P (converse, tangent \perp radius) Page 1 ## Example 1 In the figure, ABCD is a cyclic quadrilateral. AX and DY are tangents, $\angle XAB = 44^{\circ}$, $\angle YDC = 57^{\circ}$, $\angle BDC = 26^{\circ}$. To find the angles of quadrilateral ABCD. Using the notation in the figure, | 2 | 0 / | | |--|----------------------------|---------------------------------------| | $b = 57^{\circ}$ | | (∠ in alt. segment) | | $d = 44^{\circ}$ | | (∠ in alt. segment) | | $\angle C + 26^{\circ} + 57^{\circ} = 180^{\circ}$ | | $(\angle \text{ sum of } \Delta BCD)$ | | $\angle C = 97^{\circ}$ | | | | $\angle A + \angle C = 180^{\circ}$ | | (opp. ∠s, cyclic quad.) | | $\angle A = 180^{\circ} - 97^{\circ} = 83^{\circ}$ | | | | $\angle ADC = d + 26^{\circ} = 44^{\circ}$ | $+26^{\circ} = 70^{\circ}$ | | $$\angle ADC = d + 26^{\circ} = 44^{\circ} + 26^{\circ} = 70^{\circ}$$ $$\angle ABC + \angle ADC = 180^{\circ}$$ (opp. $\angle s$, cyclic quad.) $\angle ABC = 180^{\circ} - 70^{\circ} = 110^{\circ}$ ## Example 2 As shown in the figure, To prove: DA tocues the circle ABC at A. $$\angle ACB = 115^{\circ} - 50^{\circ} = 65^{\circ}$$ $\angle B + 65^{\circ} + 45^{\circ} = 180^{\circ}$ (\angle sum of $\triangle ABC$) $\angle B = 70^{\circ}$ $$\angle CAD = 180^{\circ} - 60^{\circ} - 50^{\circ} = 70^{\circ}$$ (\angle sum of $\triangle ACD$) $$\therefore \angle B = 70^{\circ} = \angle CAD$$ \therefore DA is a tangent to the circle ABC at A (converse, \angle in alt. seg.) ## Example 3 In the figure, ABCD is a minor arc of a circle, such that AB = BC, AB and DC are produced to meet at X and DB is produced to meet the X tangent AY at Y. To prove: YX = YA. Join AD. Using the notation in the figure, $$d = a$$ (\angle in alt. segment) $d = d_1$ (eq. chords eq. \angle s) $\therefore a = d_1$ A, D, X, Y are concyclic (converse, \angle s in the same seg.) x = d (\angle s in the same segment) $\therefore a = x$ YX = YA (sides opp. eq. \angle s)