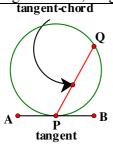
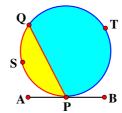
Angle in alternate segment

Created by Mr. Francis Hung on 20210926

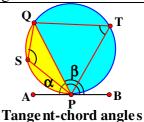
Tangent-chord, tangent-chord segments, angles in tangent-chord segment.



AB is a tangent to the circle at P PQ is a chord, called the tangent chord.

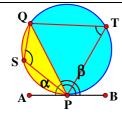


The tangent-chord PQ divides the circle into two segments PSO PTQcalled and tangent-chord segments.



Last updated: 2021-09-26

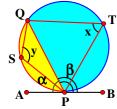
Tangent-chord angles refer to $\angle APQ = \alpha \text{ or } \angle BPQ = \beta.$



Segment PTO alternate segment corresponding in to $\angle APQ = \alpha$.

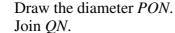
lies on the Similarly, segment PSQ opposite side of $\angle APQ$, Hence, on the opposite side of $\angle BPQ$, $\angle PTQ$ is called an angle in Hence, $\angle PSQ$ is called an angle alternate segment corresponding to $\angle BPQ = \beta$.

Theorem 1 A tangent-chord angle of a circle is equal to an angle in the alternate segment.



In the figure, AB is a tangent at P. To prove $\alpha = x$, $\beta = y$. Abbreviation: ∠ in alt. segment

Proof: Let the centre be *O*.



$$\angle PNQ = \angle PTQ = x$$

 $(\angle s \text{ in the same segment})$

$$\angle PON = 90^{\circ}$$

(∠ in semi-circle)

$$\angle NPQ = 180^{\circ} - 90^{\circ} - x = 90^{\circ} - x \ (\angle \text{ sum of } \Delta)$$

$$\alpha + \angle NPQ = 90^{\circ}$$

(tangent \perp radius)

$$\alpha = x$$

$$x + y = 180^{\circ}$$

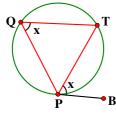
(opp. \angle s, cyclic quad.)

$$\alpha + \beta = 180^{\circ}$$

(adj. \angle s on st. line)

$$\therefore \beta = y$$

Theorem 2 In the figure, given the circle PQT. $\angle BPT = \angle PQT = x$. To prove BP is a tangent at P.



Abbreviation: Converse, \angle in alt. segment

Proof: Let the centre be *O*.

Draw the diameter PON.

Join *QN*.

$$\angle PON = 90^{\circ}$$

(∠ in semi-circle)

$$\angle NOT = 90^{\circ} - x$$

$$\angle NPT = \angle NQT = 90^{\circ} - x$$

 $(\angle s \text{ in the same segment})$

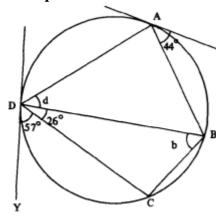
$$\angle NPT + \angle BPT = 90^{\circ} - x + x = 90^{\circ}$$

 $\therefore PB$ is a tangent at P

(converse, tangent \perp radius)

Page 1

Example 1



In the figure, ABCD is a cyclic quadrilateral. AX and DY are tangents, $\angle XAB = 44^{\circ}$, $\angle YDC = 57^{\circ}$, $\angle BDC = 26^{\circ}$. To find the angles of quadrilateral ABCD.

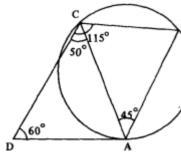
Using the notation in the figure,

2	0 /	
$b = 57^{\circ}$		(∠ in alt. segment)
$d = 44^{\circ}$		(∠ in alt. segment)
$\angle C + 26^{\circ} + 57^{\circ} = 180^{\circ}$		$(\angle \text{ sum of } \Delta BCD)$
$\angle C = 97^{\circ}$		
$\angle A + \angle C = 180^{\circ}$		(opp. ∠s, cyclic quad.)
$\angle A = 180^{\circ} - 97^{\circ} = 83^{\circ}$		
$\angle ADC = d + 26^{\circ} = 44^{\circ}$	$+26^{\circ} = 70^{\circ}$	

$$\angle ADC = d + 26^{\circ} = 44^{\circ} + 26^{\circ} = 70^{\circ}$$

$$\angle ABC + \angle ADC = 180^{\circ}$$
 (opp. $\angle s$, cyclic quad.)
 $\angle ABC = 180^{\circ} - 70^{\circ} = 110^{\circ}$

Example 2



As shown in the figure, To prove: DA tocues the circle ABC at A.

$$\angle ACB = 115^{\circ} - 50^{\circ} = 65^{\circ}$$

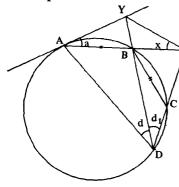
 $\angle B + 65^{\circ} + 45^{\circ} = 180^{\circ}$ (\angle sum of $\triangle ABC$)
 $\angle B = 70^{\circ}$

$$\angle CAD = 180^{\circ} - 60^{\circ} - 50^{\circ} = 70^{\circ}$$
 (\angle sum of $\triangle ACD$)

$$\therefore \angle B = 70^{\circ} = \angle CAD$$

 \therefore DA is a tangent to the circle ABC at A (converse, \angle in alt. seg.)

Example 3



In the figure, ABCD is a minor arc of a circle, such that AB = BC, AB and DC are produced to meet at X and DB is produced to meet the X tangent AY at Y. To prove: YX = YA.

Join AD. Using the notation in the figure,

$$d = a$$
 (\angle in alt. segment)
 $d = d_1$ (eq. chords eq. \angle s)

 $\therefore a = d_1$

A, D, X, Y are concyclic (converse, \angle s in the same seg.) x = d (\angle s in the same segment)

 $\therefore a = x$

YX = YA (sides opp. eq. \angle s)