Created by Francis Hung on 20101016

Two circles with centres P, Q touches each other at T. To prove that P, T, Q are collinear.



Suppose *P*, *T*, *Q* are **not collinear**. Join *PQ*. A triangle *PTQ* is formed.

Let D be the foot of perpendicular drawn from T onto PQ.

Produce TD to F so that TD = DF. Join PF, QF.

$$PD = PD$$
 common sides
 $TD = DF$ by construction
 $\angle PDT = \angle PDF = 90^{\circ}$ by construction
 $\therefore \Delta PDT \cong \Delta PDF$ S.A.S.
 $PT = PF$ corr. sides $\cong \Delta$ s
 $QD = QD$ common sides
 $TD = DF$ by construction
 $\angle QDT = \angle QDF = 90^{\circ}$ by construction
 $\therefore \Delta QDT \cong \Delta QDF$ S.A.S.
 $QT = QF$ corr. sides $\cong \Delta$ s
 $\therefore PT = PF = \text{radii}$ and $QT = QF = \text{radii}$

 \therefore F lies on the two circles.

 \Rightarrow The two circles intersect at two distinct points T, F.

This contradicts to the fact that they touch each other at only one point T.

Therefore, *P*, *T*, *Q* are collinear.

If a line GH is drawn through T and perpendicular to PQ, then it is a common tangent to both circles. (converse, tangent \perp radius).

