Tangent from external point Example

Created by Francis Hung on 20070818

Last updated: 24 September 2021

1961 HKU O Level Pure Mathematics Paper 2 Q2(a)

In the figure, the circle T_1 is the **in-circle** and T_2 is the **ex-circle** of the triangle ABC and the points X, Y, Z, P, Q, R are the **points of contact**.

- **Prove that** (a) AQ = AR = s
 - (b) AY = AZ = s a
 - (c) YQ = RZ = a, where 2s is the perimeter of the triangle ABC and a = BC.
- (a) AQ = AR (tangent from ext. point)

BP = BQ (tangent from ext. point)

CP = CR (tangent from ext. point)

$$AQ + AR = AB + (BP + CP) + AC$$

= $AB + BC + AC$ = perimeter of $\triangle ABC$
= $2s$
 $\therefore AQ = AR = s$

(b) AY = AZ (tangent from ext. point)

BX = BY (tangent from ext. point)

CX = CZ (tangent from ext. point)

$$AY + AZ = AB - BY + AC - CZ$$

$$= AB + AC + BC - BC - (BX + CX)$$

$$= 2s - 2a$$

$$\therefore AY = AZ = s - a$$

(c)
$$YQ = AQ - AY$$

 $= AR - AZ$ (by (a) and (b))
 $= RZ$
 $YQ = AQ - AY = s - (s - a) = a$
 $\therefore YQ = RZ = a$