Tangent ⊥ radius

Created by Mr. Francis Hung on 20210923

Last udated: 2021-09-24

Page 1

Relation between a straight line and a circle.

relation between a straight line and a entite.		
Case 1 The line intersects the circle at two distinct points <i>A</i> and <i>B</i> .	Case 2 The line does not intersect wthe circle	Case 3 The line touches the circle at only one point <i>P</i> .
L A chord B secant line		T point of contact

Theorem 1 Let AB be a tangent which touches a circle (centre at O) at a point T. Then $OT \perp AB$.

There are three cases:

case $1 \angle ATO < 90^{\circ}$, case $2 \angle ATO > 90^{\circ}$, case $3 \angle ATO = 90^{\circ}$

We shall prove that case 1 and case 2 are impossible and conclude that only case 3

Locate a point *P* on *AB* so that $OP \perp AB$. Join OP.

Locate a point S on AP so that PT = PS.

Then
$$\triangle OPT \cong \triangle OPS$$
 (S.A.S.)

$$OS = OT = \text{radii}$$
 (cor. sides, $\cong \Delta s$)

:. S lies on the circle.

tangent \perp radius \cdot : S and T are two distinct point on AB and also on the circle

:. AB cuts the circle at two different points

This contradicts the fact that AB is a tangent.

∴ Case 1 is impossible

Case $2 \angle ATO > 90^{\circ}$

Again, we can construct another $\triangle OPS \cong \triangle OPT$, which arrives at the impossible conclusion.

 \therefore Only case 3 is correct. $\angle ATO = 90^{\circ}$

Theorem 2 Let AB be a line which cuts a circle (centre at O) at T. If $OT \perp AB$, then AB is a tangent.

Draw a tangent CTD through T

Then
$$\angle DTO = 90^{\circ}$$
 (tangent \perp radius)

$$\therefore \angle BTO = 90^{\circ} \text{ and } \angle DTO = 90^{\circ}$$

$$\begin{array}{c} \mathbf{D} \\ \mathbf{B} \ \therefore \ BT // \ DT \end{array} \qquad \text{(cor. } \angle \mathbf{s} \text{ e} \mathbf{o} \end{array}$$

$$DT$$
 (cor. \angle s eq.)

 \therefore ATB and CTD both pass through the same point T

:. ATB overlaps with CTD

i.e. AB is a tangent to the circle

Abbreviation: Converse, tangent ⊥ radius

Theorem 3 Let AB be a tangent which touches a circle (centre at O) at T. If another line MTN is drawn through T and perpendicular to AB, then MTN must pass through the centre (O).

Join OT.

$$OT \perp AB$$
 (tangent \perp radius)

$$\therefore \angle BTO = 90^{\circ} \text{ and } \angle BTM = 90^{\circ}$$

$$\therefore BT // MT$$
 (cor. \angle s eq.)

$$\because OT$$
 and MTN both pass through the same point T

i.e. MTN must pass through the centre O.

Class Exercise on tangent \perp radius

Created by Mr. Francis Hung on 20210904

1. Find the radius of the circle.

[no solution]

Last updated: 2021-09-24

2. Find the radius of the circle.

[2]

(O is the centre of the large semi-circle.)

3. Find *x*.

[24]

4.

In the figure, AQ is a tangent which touches the circle (centre at O) at A.

$$\angle AQP = 90^{\circ}$$
, $AQ = 15$, $PQ = 9$. Find the radius. [17]

1. Let O be the centre. Suppose AB is the vertical wall. AC is the horizontal ground. $\angle BAC = 90^{\circ}$. Suppose the circle touches AB at B and AC at C respectively. Join OB and OC.

$$OB \perp AB$$
, $OC \perp AC$ (tangent \perp radius)

OBMD, DMAC, PNDC are rectangles

$$OB = DM = CA = r$$
, $OC = BA = r$ (opp. sides of rectangle)

$$DC = MA = 8$$
, $MP = AN = 15$ (opp. sides of rectangle)

$$CN = AN - CN = 15 - r$$
, $OD = OC - OD = r - 8$

K

R

 $OD \perp DP$

In
$$\triangle ODP$$
, $(r-8)^2 + (15-r)^2 = r^2$ (Pythagoras' theorem)

$$r^2 - 16r + 64 + 225 - 30r + r^2 = r^2$$

$$r^2 - 46r + 289 = 0$$

$$r = 7.5 \text{ or } 38.5$$

:
$$r - 8 > 0$$
 and $15 - r > 0$

.. Both answers are rejected

There is no solution.

2. Join *PR* and *QR*, which intersect the two smaller semi-circles at *F* and *G* respectively.

Join *OR* and produce it to meet the large semicircle at *K*.

$$OK = 6$$
, $RF = RG = RK = r$

$$\Delta POR \cong \Delta QOR$$
 (S.S.S.)

$$\angle POR = \angle OOR = 90^{\circ} \text{ (corr. } \angle s, \cong \Delta s)$$

In
$$\triangle POR$$
, $3^2 + (6 - r)^2 = (3 + r)^2$ (Pyth. theorem)

$$9 + 36 - 12r + r^2 = 9 + 6r + r^2$$

r = 2

3.
$$\angle A = \angle B = \angle C = \angle D = 90^{\circ}$$

$$OE \perp AD$$
, $PF \perp DC$, $QG \perp BC$, $QH \perp AB$ (tangent \perp radius)

Produce *EP* and *HQ* to meet at *I*.

HQ cuts the circle with radius 7 at K and HI produced cuts BC at J.

$$AD = 13 + 8 + 8 = 29 = BC$$
, $IJ = PF = 8$

$$QI = 29 - 2 - 7 - 8 = 12$$

 $PI \perp OI$

In
$$\Delta PQI$$
, $PI^2 + 12^2 = 15^2$ (Pythagoras' theorem)

PI = 9

$$x = BC = 8 + 9 + 7 = 24$$

4. $OA \perp AQ$ (tangent \perp radius)

$$AN = QP = 9$$
 (opp. sides of rectangle)

$$NP = 15$$
 (opp. sides of rectangle)

Let
$$OA = OP = r$$

$$ON = r - 9$$

In
$$\triangle ONP$$
, $(r-9)^2 + 15^2 = r^2$ (Pythagoras' theorem)

$$r^2 - 18r + 306 = r^2$$

r = 17

