Ptolemy's Theorem First Proof

Created by Francis Hung

Last updated: 29 October 2024

Let ABCD be a cyclic quadrilateral. AB = p, BC = q, CD = r, AD = s, AC = x, BD = y, then pr + qs = xy.

Proof: Without loss of generality, let $\angle CBD \le \angle ABD$.

On AC locate a point E such that $\angle ABE = \angle CBD$.

Let
$$\angle ABE = \angle CBD = \theta$$
, let $AE = t$, then $CE = x - t$.

 $\angle BDC = \angle BAE$ (\angle s in the same segment)

∴ $\triangle BCD \sim \triangle BEA$ (equiangular)

$$\frac{t}{p} = \frac{r}{y}$$
 (cor. sides $\sim \Delta s$)

$$\Rightarrow ty = pr \cdot \cdots \cdot (1)$$

$$\angle ABD = \theta + \angle EBD = \angle CBE$$

 $\angle BCE = \angle BDA$ (\angle s in the same segment)

 $\therefore \Delta BCE \sim \Delta BDA$ (equiangular)

$$\frac{x-t}{q} = \frac{s}{y} \qquad \text{(cor. sides } \sim \Delta s\text{)}$$

$$\Rightarrow xy - ty = qs \cdot \cdots \cdot (2)$$

$$(1) + (2) \Rightarrow xy = pr + qs$$
.

The proof is completed.

Ptolemy's Theorem Second Proof

HKAL Pure Mathematics 1957 Paper 1 Q6

Created by Mr. Francis Hung

The lengths of sides and diagonals of quadrilateral ABCD are :

$$AB = a, BC = b, CD = c, DA = d, AC = p, BD = q$$
.

If ABE is the triangle similar (and similarly oriented) to triangle ADC with AB and AD as corresponding sides, express EB in terms of a, c and d, and EC in terms of p, q and d.

Hence prove

- (i) that $pq \le ac + bd$, and
- (ii) that if the equality sign holds, ABCD is a cyclic quadrilateral, and conversely.

Deduce a theorem about an equilateral triangle by considering a cyclic quadrilateral *ABCD* in which *ABC* is an equilateral triangle.

$$\therefore \Delta ADC \sim \Delta ABE \therefore \frac{EB}{a} = \frac{c}{d} \Rightarrow EB = \frac{ac}{d}$$

Let
$$\angle BAE = \theta = \angle CAD$$
 (corr. \angle s. $\sim \Delta$ s), let $AE = x$

$$\frac{x}{a} = \frac{p}{d}$$
 and $\angle EAC = \theta + \angle BAC = \angle BAD$

 $\therefore \Delta EAC \sim \Delta BAD$ (ratio of 2 sides, included \angle)

$$\frac{EC}{q} = \frac{p}{d}$$
 (cor. sides, $\sim \Delta s$)

$$EC = \frac{pq}{d}$$

(i) In
$$\triangle BCE$$
, $EB + BC \ge EC$ (triangle inequality)

$$\frac{ac}{d} + b \ge \frac{pq}{d}$$

$$\therefore ac + bd \ge pq$$

$$\therefore \Delta EAC \sim \Delta BAD \therefore \angle ACE = \angle ADB$$

ABCD is a cyclic quadrilateral (converse, ∠s in the same segment)

In a circle, there is a cyclic quadrilateral ABCD.

Let
$$AB = p$$
, $BC = q$, $CD = r$, $AD = s$, $AC = x$, $BD = y$.

Then
$$pr + qs = xy$$
 and $x(pq + rs) = y(ps + qr)$

Proof: In
$$\triangle ABC$$
, $x^2 = p^2 + q^2 - 2 pq \cos B$

In
$$\triangle ADC$$
, $x^2 = r^2 + s^2 - 2 rs \cos D$

$$\therefore x^2 = p^2 + q^2 - 2 pq \cos B = r^2 + s^2 - 2 rs \cos D$$

$$\therefore \angle B + \angle D = 180^{\circ} \therefore \cos D = -\cos B.$$

$$p^2 + q^2 - 2pq \cos B = r^2 + s^2 + 2rs \cos B$$

$$\cos B = \frac{p^2 + q^2 - r^2 - s^2}{2(pq + rs)}$$

$$x^{2} = p^{2} + q^{2} - 2pq \frac{p^{2} + q^{2} - r^{2} - s^{2}}{2(pq + rs)}$$

$$= \frac{p^{3}q + p^{2}rs + pq^{3} + q^{2}rs - p^{3}q - pq^{3} + pqr^{2} + pqs^{2}}{pq + rs}$$

$$pq + rs$$

$$= \frac{pr(ps+qr)+qs(qr+ps)}{pq+rs}$$

$$x^{2} = \frac{(ps+qr)(pr+qs)}{pq+rs} \cdots (3)$$

In
$$\triangle ABD$$
, $y^2 = p^2 + s^2 - 2 ps \cos A$

In
$$\triangle BCD$$
, $y^2 = q^2 + r^2 - 2 qr \cos C$

$$y^2 = q^2 + r^2 - 2 qr \cos C = p^2 + s^2 - 2 ps \cos A$$

$$\therefore \angle A + \angle C = 180^{\circ} \therefore \cos A = -\cos C$$

$$q^2 + r^2 - 2 rq \cos C = p^2 + s^2 + 2 ps \cos C$$

$$\cos C = \frac{q^2 + r^2 - p^2 - s^2}{2(ps + qr)}$$

$$y^{2} = q^{2} + r^{2} - 2 qr \frac{q^{2} + r^{2} - p^{2} - s^{2}}{2(ps + qr)}$$

$$= \frac{qr^{3} + pr^{2}s + q^{3}r + pq^{2}s - q^{3}r - qr^{3} + p^{2}qr + qrs^{2}}{ps + qr}$$

$$= \frac{pq(pr + qs) + rs(pr + qs)}{ps + qr}$$

$$y^{2} = \frac{(pq + rs)(pr + qs)}{ps + qr} \cdots (4)$$

$$pa(nr+as)+rs(nr+as)$$

$$pq(pr+qs)+rs(pr+qs)$$

$$\frac{ps+qr}{s(pr+qs)}$$
 (4

$$(3) \vee (4)$$

$$(3) \times (4)$$

$$x^{2}y^{2} = \frac{(ps+qr)(pr+qs)}{pq+rs} \cdot \frac{(pq+rs)(pr+qs)}{ps+qr}$$

$$(xy)^2 = (pr + qs)^2$$

$$\therefore xy = pr + qs$$

The theorem is proved.

The converse of Ptolemy's Theorem

Created by Francis Hung

Last updated: 29 October 2024

Given a quadrilateral ABCD.

Let
$$AB = p$$
, $BC = q$, $CD = r$, $AD = s$, $AC = x$, $BD = y$.

If ac + bd = xy, then ABCD is a cyclic quadrilateral.

Construct a point E outside ABCD such that

$$\angle BAE = \theta$$
, $\angle ABE = \beta$. Join AE , BE and CE .

By definition, $\triangle ACD \sim \triangle AEB$ (equiangular)

$$\frac{AE}{p} = \frac{a}{d} = \frac{EB}{c} \text{ (cor. sides, $\sim \Delta s$)}$$

$$\frac{AE}{a} = \frac{p}{d}$$
 ...(5), $EB = \frac{ac}{d}$...(6)

$$\angle EAC = \theta + \angle BAC = \angle BAD \cdots (7)$$

 $\Delta EAC \sim \Delta BAD$ (By (5) and (7), ratio of 2 sides, included \angle)

$$\frac{EC}{q} = \frac{p}{d}$$
 (cor. sides, $\sim \Delta s$)

$$EC = \frac{pq}{d}$$
 ···(8)

$$\therefore ac + bd = pq$$
 (given)

$$\frac{ac}{d} + b = \frac{pq}{d}$$

$$EB + BC = EC$$
 (by (6) and (8))

 \therefore E, B, C are collinear

 $\therefore A, B, C, D$ are collinear (ext. $\angle = \text{int. opp. } \angle$)

Ptolemy's theorem Extension

$$x(pq+rs) = \sqrt{\frac{(ps+qr)(pr+qs)}{pq+rs}} \cdot (pq+rs) \text{ by (3) on page 3}$$

$$= \sqrt{(ps+qr)(pr+qs)(pq+rs)}$$

$$y(ps+qr) = \sqrt{\frac{(pq+rs)(pr+qs)}{ps+qr}} \cdot (ps+qr) \text{ by (4) on page 3}$$

$$= \sqrt{(ps+qr)(pr+qs)(pq+rs)}$$

$$\therefore x(pq+rs) = y(ps+qr)$$

Converse of Ptolemy's theorem Extension

If
$$pr + qs = xy \cdot \cdot \cdot \cdot (9)$$
 and $x(pq + rs) = y(ps + qr) \cdot \cdot \cdot \cdot (10)$

for positive quantities p, q, r, s, x and y, then they are the sides of a cyclic quadrilateral.

Proof: (10) implies that
$$\frac{x}{ps+qr} = \frac{y}{pq+rs} = k$$
 (10), where k is a constant $x = (ps+qr)k$ (11), $y = (pq+rs)k$ (12)
Sub. (11), (12) into (9): $xy = (ps+qr)(pq+rs)k^2 = pr+qs$

$$k = \sqrt{\frac{(pr+qs)}{(ps+qr)(pq+rs)}}$$
 (13)

Sub. (13) into (11):
$$x = (ps + qr)\sqrt{\frac{(pr + qs)}{(ps + qr)(pq + rs)}} = \sqrt{\frac{(ps + qr)(pr + qs)}{(pq + rs)}}$$

Sub. (13) into (12): $y = (pq + rs)\sqrt{\frac{(pr + qs)}{(ps + qr)(pq + rs)}} = \sqrt{\frac{(pr + qs)(pq + rs)}{(ps + qr)}}$

Construct a triangle $\triangle ABC$ with sides lengths AB = p, BC = q and AC = x. Then,

$$\cos B = \frac{p^{2} + q^{2} - x^{2}}{2pq} = \frac{p^{2} + q^{2} - \frac{(ps + qr)(pr + qs)}{(pq + rs)}}{2pq} = \frac{(p^{2} + q^{2})(pq + rs) - (ps + qr)(pr + qs)}{2pq(pq + rs)}$$

$$= \frac{p^{3}q + pq^{3} + p^{2}rs + q^{2}rs - (p^{2}rs + pqr^{2} + pqs^{2} + q^{2}rs)}{2pq(pq + rs)}$$

$$= \frac{p^{3}q + pq^{3} - pqr^{2} - pqs^{2}}{2pq(pq + rs)} = \frac{p^{2} + q^{2} - r^{2} - s^{2}}{2(pq + rs)}$$

Construct a triangle $\triangle ACD$ with sides lengths AD = s, CD = r and AC = x. Then,

construct a triangle
$$\Delta reD$$
 with sides lengths RD s, CD r and RC x . Then,
$$\cos D = \frac{r^2 + s^2 - x^2}{2rs} = \frac{r^2 + s^2 - \frac{(ps + qr)(pr + qs)}{(pq + rs)}}{2rs} = \frac{(r^2 + s^2)(pq + rs) - (ps + qr)(pr + qs)}{2rs(pq + rs)}$$

$$= \frac{pqr^2 + pqs^2 + r^3s + rs^3 - (p^2rs + pqr^2 + pqs^2 + q^2rs)}{2rs(pq + rs)}$$

$$= \frac{r^3s + rs^3 - p^2rs - q^2rs}{2rs(pq + rs)} = \frac{r^2 + s^2 - p^2 - q^2}{2(pq + rs)} = -\cos B$$

$$\therefore B + D = 180^\circ$$

Ptolemy's Theorem Extension

Construct a triangle $\triangle ABD$ with sides lengths AB = p, AD = s and BD = y. Then,

$$\cos A = \frac{p^{2} + s^{2} - y^{2}}{2ps} = \frac{p^{2} + s^{2} - \frac{(pr + qs)(pq + rs)}{(ps + qr)}}{2ps} = \frac{(p^{2} + s^{2})(ps + qr) - (pr + qs)(pq + rs)}{2ps(ps + qr)}$$

$$= \frac{p^{3}s + ps^{3} + p^{2}qr + s^{2}qr - (p^{2}qr + q^{2}ps + r^{2}ps + s^{2}qr)}{2ps(ps + qr)}$$

$$= \frac{p^{3}s + ps^{3} - q^{2}ps - r^{2}ps}{2ps(ps + qr)} = \frac{p^{2} + s^{2} - q^{2} - r^{2}}{2(ps + qr)}$$

Construct a triangle $\triangle BCD$ with sides lengths BC = q, CD = r and BD = y. Then,

$$\cos C = \frac{q^{2} + r^{2} - y^{2}}{2qr} = \frac{q^{2} + r^{2} - \frac{(pr + qs)(pq + rs)}{(ps + qr)}}{2qr} = \frac{(q^{2} + r^{2})(ps + qr) - (pr + qs)(pq + rs)}{2qr(ps + qr)}$$

$$= \frac{q^{2}ps + r^{2}ps + q^{3}r + qr^{3} - (p^{2}qr + q^{2}ps + r^{2}ps + s^{2}qr)}{2qr(ps + qr)}$$

$$= \frac{q^{3}r + qr^{3} - p^{2}qr - s^{2}qr}{2qr(ps + qr)} = \frac{q^{2} + r^{2} - p^{2} - s^{2}}{2(ps + qr)} = -\cos A$$

∴ $A + C = 180^{\circ}$

ABCD is a cyclic quadrilateral