Euler line

The circumcentre O, centriod G and the orthocentre H are collinear.

Furthermore, G divides OH in the ratio 1:2.

Recall the definition of circumcentre, centriod and orthocentre:

In the figure, BP = PC, AQ = QC.

The perpendicular bisectors QO and PO meet at O.

The altitudes AD and BE meet at H.

OH meets the median *AP* at *G*.

Try to show that G = centriod and OG : GH = 1 : 2.

OP // AH, OQ // BH (altitudes)

PQ // AB (mid point theorem)

$$\therefore \Delta OPQ \sim \Delta HAB \qquad (3 pairs of // lines)$$

$$PQ = \frac{1}{2}AB$$
 (mid point theorem)

$$\therefore OP = \frac{1}{2}AH \cdots (*) \quad \text{(corr. sides, $\sim \Delta s$)}$$

$$\angle AGH = \angle PGO$$
 (vert. opp. $\angle s$)

$$\angle GAH = \angle GPO$$
 (alt. $\angle s$, $AH // OP$)

$$\angle GHA = \angle GOP$$
 (alt. $\angle s, AH // OP$)

$$\Delta AGH \sim \Delta PGO$$
 (equiangular)

$$OG: GH = OP: AH$$
 (corr. sides, $\sim \Delta s$)

$$= 1: 2$$
 (proved in (*))
 $PG: GA = OP: AH$ (corr. sides, $\sim \Delta s$)
 $= 1: 2$

 \therefore G is the centroid.

The line segment joining O and H is called the Euler line.

9-point circle

Theorem 1

In $\triangle ABC$, AD, BE and CF are the altitudes which intersects at the orthocentre H.

P, Q and R are mid points of BC, CA and AB respectively. Then D, E, F and P are concyclic.

$$\therefore \angle BFC = \angle BEC = 90^{\circ}$$

 \therefore B, C, E, F are concyclic

Let
$$\angle ABC = x$$
.

$$\angle AEF = x$$

$$\therefore \angle AEB = \angle ADB = 90^{\circ}$$

 \therefore A, B, D, E are concyclic

$$\angle CED = x$$

$$\angle DEF = 180^{\circ} - 2x$$

BC = diameter of the circle BFEC.

(Given BE and CF are altitudes)

(Converse ∠s in the same segment)

(ext \angle , cyclic quad.)

(Given BE and AD are altitudes)

(Converse \angle s in the same segment)

(ext ∠, cyclic quad.)

(adj. \angle on st. line)

(Converse, ∠ in semi-circle)

 \therefore P = mid point of the diameter BC \therefore P = centre of the circle BCEF.

BP = PF = radii

$$\angle PFB = x$$

 $\angle FPD = \angle PFB + \angle PBF = 2x$

 $\angle FPD + \angle DEF = 2x + 180^{\circ} - 2x = 180^{\circ}$

$$\angle FPD + \angle DEF - 2x + 180 - 2x - 18$$

∴ *EFPD* is a cyclic quadrilateral.

(base \angle s, isos. Δ)

(ext. \angle of Δ)

(opp. \angle s supp.)

The theorem is proved.

Using this theorem, we can draw a circle which passes through P, D, E, Q, F, R.

Theorem 2

In $\triangle ABC$, AD, BE and CF are the altitudes which intersects at the orthocentre H.

K, M, N are mid points of AH, BH and CH respectively.

Then D, E, K and F are concyclic.

Join FK, EK. Let $\angle FKE = y$.

$$\angle AEH + \angle AFH = 180^{\circ}$$

A, E, H, F are concyclic (opp. \angle s supp.)

 $\therefore AH = \text{diameter of the circle } AEHF.$

(Converse, ∠ in semi-circle)

 \therefore K is the mid point of AH

 \therefore K = centre of the circle

$$\angle BAC = \frac{y}{2} \ (\angle \text{ at centre twice } \angle \text{ at } \odot^{\text{ce}})$$

$$\therefore \angle AFC = \angle ADC = 90^{\circ}$$

 \therefore A, C, D, F are concyclic (converse \angle s in same seg.)

$$\angle BDF = \frac{y}{2}$$
 (ext. \angle , cyclic quad.)

$$\therefore \angle AEB = \angle ADB = 90^{\circ}$$

 \therefore A, B, D, E are concyclic (converse \angle s in same seg.)

$$\angle CDE = \frac{y}{2}$$
 (ext. \angle , cyclic quad.)

$$\angle EDF = 180^{\circ} - 2 \times \frac{y}{2} = 180^{\circ} - y$$
 (adj. \angle s on st. line)

$$\angle EDF + \angle EKF = 180^{\circ} - y + y = 180^{\circ}$$

 \therefore D, E, F and K are concyclic (opp. \angle s supp.)

The theorem is proved.

Using this theorem, we can draw a circle which passes through D, N, E, K, F, M:

From theorem 1 and theorem 2, the circle passes through D, E, F, K, M, N, P, Q, R is called the **nine-point circle**.

The radius of 9-point circle half circumradius

Let BC = a, CA = b, AB = c.

: The 9-point circle passes through the mid-points of BC, CA and AB respectively.

$$\therefore QR = \frac{a}{2}, PR = \frac{b}{2}, PQ = \frac{c}{2} \text{ and } RQ // BC, RP // AC, QP // AC \text{ (mid-point theorem)}$$

$$\angle QPR = A$$
, $\angle PQR = B$, $\angle PRQ = C$.

Let the radii of the 9-point circle and the circumcircle be r and s respectively. Then by sine formula,

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = \frac{s}{2} \quad \dots (1), \quad \frac{\frac{a}{2}}{\sin A} = \frac{\frac{b}{2}}{\sin B} = \frac{\frac{c}{2}}{\sin C} = \frac{r}{2} \quad \dots (2)$$

(1)÷(2):
$$2 = \frac{s}{r}$$

$$\therefore r = \frac{s}{2}$$

The result is proved.

The centre (W) of the 9-point circle lies mid-way between the circumcentre (O) and the orthocentre (H)

In $\triangle ABC$, P, Q, R are mid points of BC, CA and AB respectively. AD, BE, CF are the altitudes. H is the orthocentre. K, M, N are mid points of AH, BH, CH respectively. O is the circumcentre. Join AO and produce AO to the other end J of the circumscribed circle. Join BJ, CJ, OP, PK, OK, PH, PJ. Suppose W is the mid-point of OH.

$$\angle ACJ = 90^{\circ}$$
 (\angle in semi-circle)
 $\angle AEB = 90^{\circ}$ ($\because BE = \text{altitude}$)
 $\therefore BE // JC$ (corr. \angle eq.)
 $\angle ABJ = 90^{\circ}$ (\angle in semi-circle)
 $\angle BFC = 90^{\circ}$ ($\because CF = \text{altitude}$)
 $\therefore JB // CF$ (int. \angle supp.)
 $\therefore BJCH$ is a parallelogram (2 pairs of //-lines)
 $BP = PC$ and $JP = PH \cdots$ (1)

J, P, H are collinear

 \therefore O = mid point of AJ and K = mid point of AH

$$\therefore OK = \frac{1}{2}JH \text{ and } OK // JH$$
 (mid point theorem)

 $\therefore OK = PH = JP \text{ and } OK // JH$ by (1)

:. *OPHK* is a parallelogram (opp. sides are eq. and parallel)

: The nine-point circle passes through P, K, D and $\angle PDK = 90^{\circ}$

 \therefore *PK* is the diameter of the nine-point circle (Converse, \angle in semi-circle) PW = WK and OW = WH (diagonals of //-gram)

W is the centre of the nine-point circle. $(\because PW=WK= \text{ radius of the 9-point circle})$

 \therefore W = mid point of OH and K = mid point of AH

$$\therefore WK = \frac{1}{2}OA$$
 (mid point theorem)

:. The radius of the nine point circle is half of the radius of the circumscribed circle.

The theorem is proved.

Together with the centroid G, we have OG : GW : WH = 2 : 1 : 3.

Trilinear coordinates of 9-point centre W

In $\triangle ABC$, P, Q, R are mid points of BC, CA and AB respectively. AD, BE, CF are the altitudes. H is the orthocentre. K, M, N are mid points of AH, BH, CH respectively. O is the circumcentre. W is the centre of the 9-point circle. S is the mid-point of PR, T is the mid-point of PD.

```
WP = WR = r, OA = OC = 2r
                                                            (radii)
2RP = AC
                                                            (mid-point theorem)
\Delta PQW \sim \Delta ACO
                                                            (3 sides proportional)
\angle AOC = 2\angle B
                                                            (\angle at centre twice \angle at \bigcirc<sup>ce</sup>)
\angle PWR = \angle AOC = 2\angle B
                                                            (corr. \angle s \sim \Delta s)
\Delta PSW \cong \Delta RSW
                                                            (S.S.S.)
\angle PWS = \angle RWS = \angle B
                                                            (corr. \angles \cong \Deltas)
                                                            (line joing centre to mid-point of chord \perp chord)
WS \perp PR and WT \perp DP
                                                            (converse, \angles in the same segment)
W, S, T, P are concyclic
\angle SWT = \angle SPT
                                                            (\angle s \text{ in the same segment})
                                                            (P and R are mid-points of BC and AB, mid-point thm)
         = \angle C
\therefore \angle PWT = \angle PWS - \angle SWT = \angle B - \angle C
The distance from W to BC = r \cos \angle PWT = r \cos(B - C)
Similarly, the distances from W to AC = r \cos(C - A) and W to AB = r \cos(A - B)
```

 $= \cos(B-C) : \cos(C-A) : \cos(A-B)$