Given \triangle ABC. To construct 3 circles touching each other externally at A, B, C

Created by Mr. Francis Hung Last updated: 30/06/2023

Steps

- (1) Using perpendicular bisectors to construct the circumcentre O. https://twhung78.github.io/Geometry/7%20Construction%20by%20ruler%20and%20compasses/circle/Circumscribed_circle.pdf
- (2) Draw $EAF \perp OA$, $DBF \perp OB$, $DCE \perp OC$.
- (3) Use D as centre, radius = DB to draw a circle C_1 , use E as centre, radius = EC to draw a circle C_2 , use E as centre, radius = E to draw a circle E3.

Then the 3 circles touch each other externally at A, B and C respectively.

Proof: : O is circumcentre of ABC

 $\therefore OA = OB = OC$ (circumradius) $\angle OAB = \angle OBA$, $\angle OBC = \angle OCB$, $\angle OAC = \angle OCA$ (base \angle s isosceles \triangle) $\angle FAB = \angle FBA$, $\angle EAC = \angle ECA$, $\angle DBC = \angle DCB$ $(EAF \perp OA, DBE \perp OB, DCF \perp OC)$ FA = FB, EA = EC, DB = DC(sides, opp. eq. \angle s) C_1 pass through B, C; C_2 pass through A, C, C_3 pass through A, BBy construction, $EAF \perp OA$, $DBF \perp OB$, $DCE \perp OC$. \therefore OA is a common tangent to C_2 , C_3 at A (converse, tangent \perp radius) *OB* is a common tangent to C_1 , C_3 at B(converse, tangent \perp radius) OC is a common tangent to C_1 , C_2 at C(converse, tangent \perp radius) \therefore The 3 circles touches each other externally at A, B and C respectively.