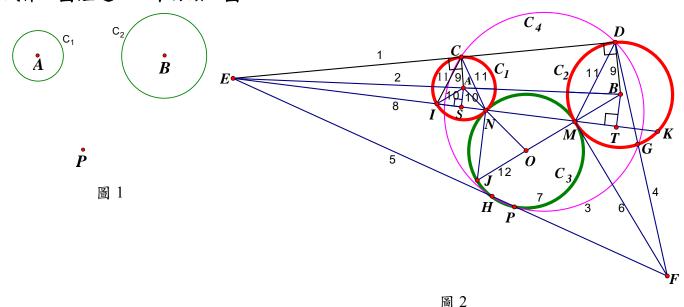
5.15 作一圓經過已知點並外切於兩已知圓

Created by Mr. Francis Hung on 20090217

Last updated: 2024-02-20

如圖1,已給兩個大小不同圓 C_1 和 C_2 ,圓心分別為A和B,一點P在兩圓外。 試作一圓經過P,外切該二圓。



作圖方法如下(圖2):

不妨假設圓 C_2 大於圓 C_1 。

- (1) 作二圓的外公切綫 CD 切圓 C_1 於 C 及切圓 C_2 於 D。(參考 5.4 作外公切綫)
- (2) 連接 BA, 其延長綫交 DC 的延長綫於 E。(若 BA // DC, 將於第 5 頁分析)
- (3) 作 ΔCDP 的外接圓 C_4 ,交圓 C_2 於 G 。
- (4) 連接 DG。
- (5) 連接 EP, 交圓 C4 於 H, 其延長綫交 DG 的延長綫於 F。
- (6) 由外點 F 引切綫 FM 至圓 C_2 上,切該圓於 M (在圓 C_4 內)。
- (7) 作ΔHMP 的外接圆 C_3 。
- (8) 連接 EM,交圓 C_1 於 I、N,其延長綫交圓 C_2 於 K。
- (9) 連接 AC 及 BD。
- (10) 連接 AI 及 AN。
- (11) 連接 CI、CN 及 DM。
- (12) 連接 BM, 其延長綫交 AN 的延長綫於 O, 且交圓 C_3 於 J。

作圖完畢,證明如下:

分別設S和T為A及B至EK之垂足。

 $FD \times FG = FM^2 \cdots (1)$ (於圓 C_2 應用相交弦定理)

 $FD \times FG = FH \times FP \cdots (2)$ (於圓 C_4 應用相交弦定理)

 $\therefore FH \times FP = FM^2 \qquad (由(1)及(2)所得, 等量代換)$

 $\therefore FM$ 切圓 C_3 於 M。 (相交弦定理的逆定理)

⇒ FM 為圓 C_2 及圓 C_3 的公切綫

⇒ 圓 C_2 及圓 C_3 互相外切於 M

 $\therefore \angle FMO = 180^{\circ} - \angle FMB = 90^{\circ}$ (直綫上的鄰角,切綫上半徑)

∴ JOM 為圓 C₃ 的直徑 ······(*)

 $\angle ACE = \angle BDE = 90^{\circ}$ (切綫上半徑)

∠AEC = ∠BED (公共角)

∴ ΔACE ~ ΔBDE (等角)

$\frac{AC}{BD} = \frac{AE}{BE} \cdot \dots \cdot (3)$	(相似三角形的對應邊)
$\angle ASE = \angle BTE = 90^{\circ}$	(由作圖所得)
$\angle AES = \angle BET$	(公共角)
$\therefore \Delta AES \sim \Delta BET$	(等角)
$\frac{AS}{BT} = \frac{AE}{BE} \cdots (4)$	(相似三角形的對應邊)
比較(3)式及(4)式得: $\frac{AC}{BD} = \frac{AS}{BT} \cdots (5)$	
分別設圓 C_1 和圓 C_2 的半徑為 a 及 b 。	
由(5)式得: $\frac{AC}{BD} = \frac{a}{b} = \frac{AS}{BT}$	
$\Rightarrow \frac{AS}{a} = \frac{BT}{b} \Rightarrow \frac{AS}{AN} = \frac{BT}{BM}$	
$\Rightarrow \sin \angle ANS = \sin \angle BMT$	
設 $\angle ANS = \angle BMT = \theta \cdots (6)$	
AI = AN	(圓 C ₁ 的半徑)
$\therefore \angle AIS = \angle ANS = \theta \cdot \cdots \cdot (7)$	(等腰三角形的底角)
比較(6)式及(7)式得: $\angle AIS = \angle BMT = \theta$	
∴ AI // BM	(同位角相等)
$\Delta AEI \sim \Delta BEM$	(等角)
$\frac{AE}{BE} = \frac{IE}{ME} \cdots (8)$	(相似三角形的對應邊)
$\therefore \Delta ACE \sim \Delta BDE$	(已證)
$\therefore \frac{AE}{BE} = \frac{CE}{DE} \cdot \dots (9)$	(相似三角形的對應邊)
比較(8)式及(9)式得: $\frac{IE}{ME} = \frac{CE}{DE} \cdots (10)$	
$\angle CEI = \angle DEM$	(公共角)
$\therefore \Delta CEI \sim \Delta DEM$	(兩邊成比例,一夾角相等)
$\angle ECI = \angle EDM \cdots (11)$	(相似三角形的對應角)
$\angle ECI = \angle CNI \cdots (12)$	(交錯弓形的圓周角)
比較(11)式及(12)式得: <i>∠EDM = ∠CNI</i>	
:. CDMN 為圓內接四邊形	(外角 = 內對角)
$EC \times ED = EN \times EM \cdot \cdots \cdot (13)$	(相交弦定理)
$EC \times ED = EH \times EP \cdot \cdots \cdot (14)$	(於圓 C4應用相交弦定理)
比較(13)式及(14)式得: EN×EM = EH×EP	
∴ N、M、P、H 四點共圓	(相交弦定理的逆定理)
∴ N 在圓 C ₃ 上。	
$∴$ $\angle ONM = \angle ANS$ \not \not $\angle BMT = \angle OMN$	(對頂角)
由(6)式得: $\angle OMN = \angle ONM = \theta$	(等量代換)
$OM = ON \cdot \cdots \cdot (15)$	(等邊對等角)
$\angle JNM = 90^{\circ}$	(由(*)得知,半圓上的圓周角)

 $\angle ONJ = 90^{\circ} - \theta$

 $\angle NJM = 90^{\circ} - \theta$

(AMJN 的內角和)

 $\therefore \angle ONJ = \angle NJM$

 $ON = OJ \cdot \cdots \cdot (16)$

(等邊對等角)

比較(15)及(16)得 OM = ON = OJ

:. O 為圓 C3 的圓心。

:: *A* 、 *N* 、 *O* 共綫。

 $\therefore AN + NO = AO$

∴ 圓 C₁ 與圓 C₃ 外切於 N。證明完畢。

討論一 為確保步驟(2) DC 和 BA 有交點 E, 圓 C_1 和圓 C_2 必須為大小不同;否則 DC 和 BA 平行而沒有交點;另外,圓 C_1 和圓 C_2 可以相交或不相交。

討論二 若圓 C_1 大於圓 C_2 ;可重新命名 C_1 為 C_2 ,及 C_2 為 C_1 。

討論三 在步驟(6)中,由外點 F 可引兩條不同的切綫至圓 C_2 上。若由 F 引另一條切綫至圓 C_2 上的 M 點(在圓 CDP 外),其餘步驟不變,則可作一圓過 P 而內切圓 C_1 和圓 C_2 。 (圖 3)

證明從略。

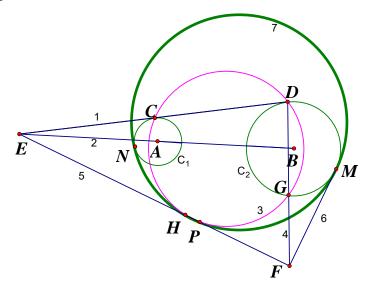
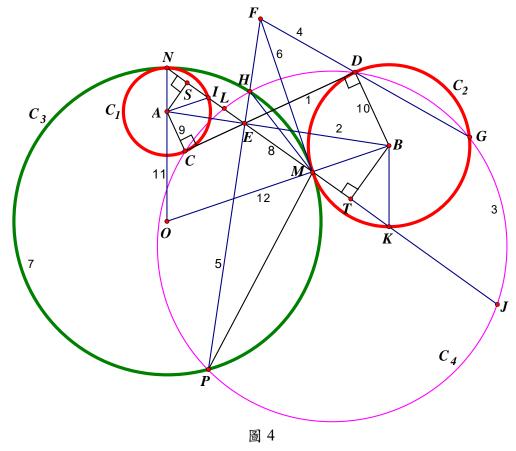


圖 3

討論四 若圓 C_1 及圓 C_2 沒有相交,作一圓過 P,內切圓 C_1 及外切圓 C_2 。



作圖方法如下(圖 4):

- (1) 作二圓的內公切幾 CD 切圓 C_1 於 C 及切圓 C_2 於 D。(參考 5.5 作內公切綫)
- (2) 連接 AB, 交 CD 於 E。
- (3) 作 ΔCDP 的外接圓 C_4 ,交圓 C_2 於 G 。
- (4) 連接 DG。
- (5) 連接 PE, 其延長綫交圓 C4 於 H, 且交 GD 的延長綫於 F。
- (6) 由外點 F 引切綫 FM 至圓 C_2 上,切該圓於 M(在圓 C_4 內)。
- (7) 作 *HMP* 的外接圆 *C*₃。
- (8) 連接 ME, 其延長綫交圓 C_1 於 I、N,交圓 C_2 於 K,交圓 C_4 於 L、J。
- (9) 連接 AC。
- (10) 連接 BD。
- (11) 連接 AN。
- (12) 連接 BM。其延長綫交 NA 的延長綫於 O。分別設 S和 T 為 A 及 B 至 NJ 之垂足。除了第一步由外切綫改為內切綫之外,以上方法與原文(第 1 頁)的步驟幾乎一模一樣。讀者可參考上文,從而推出證明方法。

討論五 若圓 C_1 及圓 C_2 半徑相等,以下作圖法顯示如何作圓經過P 而外切圓 C_1 和圓 C_2 。

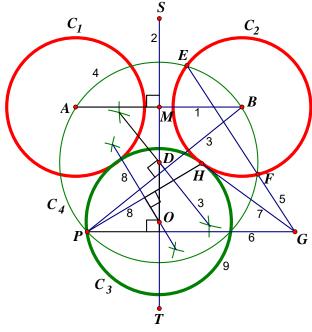


圖 5

只要將步驟(6)由外點 G 引另一條切綫 至圓 C_2 上,切該圓於 H(圓 C_3 外);

其餘步驟相同。

作圖方法如下(圖):

- (1) 連接 AB。
- (2) 作 AB 的垂直平分綫 ST, M 為 AB 的中點。
- (3) 連接 PB, 作 PB 的垂直平分綫, 交 ST 於 D。
- (4) 作圓 $C_4 \odot (D, DB)$, 交圓 C_2 於 E 和 F。
- (5) 連接 EF。
- (6) 過P作PG 垂直於ST,交EF 的延長綫於G。
- (7) 由外點 G 引切綫至圓 C_2 上,切該圓於 H(在圓 C_4 內)。
- (8) 連接 PH, 作 PH 的垂直平分綫, 交 ST 於 O。
- (9) 作圓 C₃⊙(O, OP)。

作圖完畢,證明從略。

討論六 若圓 C_1 及圓 C_2 半徑相等,以下作圖法顯示如何作圓過 P 而內切圓 C_1 和圓 C_2 。

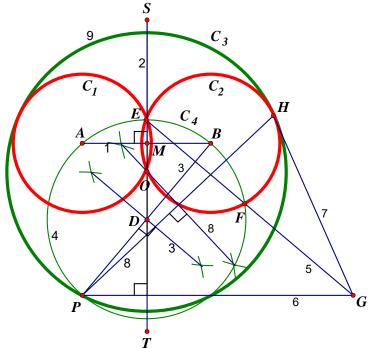


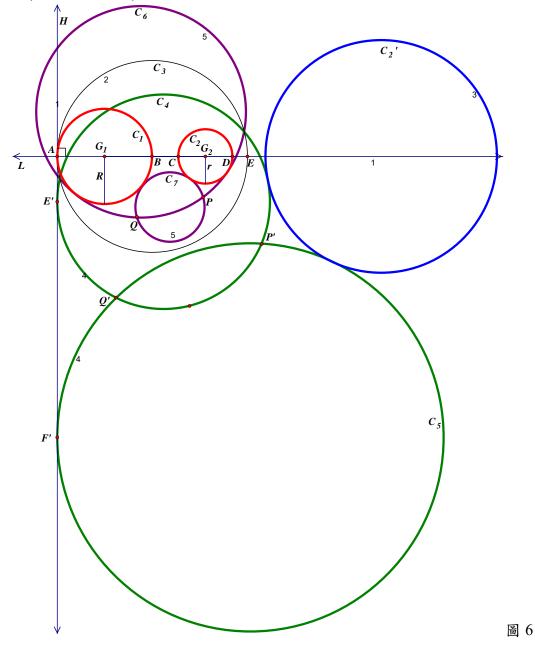
圖 5

討論七 若 $C \cdot D \cdot P$ 共綫,則第1頁中步驟(3)不能作外接圓 C_4 。

另外,若 EP // DG,,則第 1 頁中步驟(5)不能作交點 F。

再者,若H與P重疊,則第1頁中步驟(7)不能作外接圓 C3。

為了要解決以上種種已知和未知的情況,而使最終作圖不成功,現在用圓的反演 (circle inversion),加上第 5.14 段的知識,一次過解決所有問題,作圖方法如下:



設該兩已知圓為 $C_1 \odot (G_1, R)$ 及 $C_2 \odot (G_2, r)$

- (1) 設 L 為過 G_1G_2 之綫,交 C_1 於 A 和 B,及 C_2 於 C 和 D $(A \setminus B \setminus C \setminus D$ 順序)。 設 H 為過 A 之綫,且與 L 垂直。
- (2) 作圓 $C_3 \odot (B, 2R)$, 交 L 於 A 和 E。
- (3) 作圓 C_2 關於 C_3 的反演圓 C_2 , 直綫 H 為 C_1 關於 C_3 的反演。以 E 為中心,作 P 關於 C_3 的反演,其影像為 P'。
- (4) 利用第 5.14 段的知識,過 P'作二圓 C_4 及 C_5 切 C_2 及直綫 H。
- (5) 作圓 C_4 關於 C_3 的反演圓 C_6 ,作圓 C_5 關於 C_3 的反演圓 C_7 。
- C_6 和 C_7 便是所需圓形穿過 P,一內切 C_1 及 C_2 ,另一外切 C_1 及 C_2 。