Given the 3 altitudes h_a , h_b , h_c of a triangle, to construct the triangle ABC

First created by Mr. Francis Hung on 2017-11-01

Last updated:2021-09-29

Construction steps

- (1) Let *P* be any point. Draw the line segments $PL = h_a$, $PM = h_b$, $PN = h_c$ such that *L*, *M*, *N* are not collinear.
- (2) Construct the circumscribed circle through L, M and N.
- (3) Extend LP, MP and NP to meet the circle again at A', B' and C' respectively.
- (4) Use P as centre, PC' as radius to draw an arc; use A' as centre, PB' as radius to draw another arc. The two arcs intersect at A.
- (5) Join AA', AP.
- (6) Draw the altitude $AX \perp A'P$. Locate a point D on AX so that $AD = h_a$.
- (7) Draw a line segment *BDC* parallel to *PA*', cutting *AP* and *AA*' at *B* and *C* respectively.

Then $\triangle ABC$ is the required triangle.

Proof: By intersecting chords theorem, $h_a \times PA' = h_b \times PB' = h_c \times PC' + \cdots + (1)$

By step (4), $\triangle APA'$ have lengths of sides equal to PA', PB' and PC'.

By calculating the area of $\triangle APA'$ in different ways,

Height through $A \times PA' =$ Height through $P \times PB' =$ Height through $A' \times PC' \cdots (2)$

By step (6), $\triangle APA' \sim \triangle ABC$ (equiangular) and the altitude $AD = h_a$.

 $AP : PA' : AA' = AB : BC : CA \text{ (corr. sides, } \sim \Delta s)$

Let the heights of $\triangle ABC$ be AD, BE and CF be as shown in the figure.

Then AD : BE : CF = AX : altitude of $\triangle APA'$ through P : altitude of $\triangle APA'$ through $A' \cdot \cdots \cdot (3)$

Compare (1), (2), (3), we have

 $AD:BE:CF=h_a:h_b:h_c$

Use the fact that $AD = h_a$, we have $BE = h_b$, $CF = h_c$.

The proof is completed.