Given a triangle ABC. To draw an equilateral triangle DEF with minimum perimeter on ΔABC .

Created by Mr. Francis Hung on 20150702. Last updated: 2021-09-29

Theorem 1 Given a triangle ABC. To draw an equilateral triangle DEF on $\triangle ABC$.

- (1) Choose any point P on BC, any point Q on AC. Construct an equilateral ΔPQR inside ΔABC .
- (2) Join CR. Produce CR to cut AB at F.
- (3) Draw EF // QR, cutting AC at E. Draw DF // PR, cutting BC at D.
- (4) Join DE.

Then ΔDEF is the required equilateral triangle.

Proof: It is easy to prove that $\triangle CQR \sim \triangle CEF$ and $\triangle CPR \sim \triangle CDF$ (equiangular).

$$\frac{EF}{QR} = \frac{CF}{CR} \quad \dots \quad (1), \quad \frac{DF}{PR} = \frac{CF}{CR} \quad \dots \quad (2) \text{ (corr. sides, $\sim \Delta s$)}$$

$$(1) = (2): \quad \frac{EF}{OR} = \frac{DF}{PR}$$

 \therefore QR = PR (sides of an equilateral triangle)

∴
$$EF = DF$$

∠ $DFE = \angle CFD + \angle CFE$

= $\angle CRP + \angle CRQ$ (corr. ∠s, $EF / / QR$, corr. ∠s, $DF / / PR$)

= $\angle PRQ = 60^\circ$ (property of equilateral triangle)

∴ ΔDEF is an isosceles triangle with $\angle DFE = 60^\circ$

∠ $EDF = \angle DEF$ (base ∠s isos. Δ)

= $\frac{180^\circ - 60^\circ}{2}$ (∠s sum of Δ)

= 60°

 $\therefore \Delta DEF$ is the required equilateral triangle.

Remark:

It is possible that the vertices of ΔDEF lies outside ΔABC . The following figure indicates that E lies on CA produced.

Theorem 2 Given a triangle ABC. D is a point on BC.

To draw an equilateral triangle *DEF* on $\triangle ABC$.

- (1) Construct an equilateral $\Delta C_1 CD$.
- (2) Construct an equilateral $\Delta A_1 AD$.
- (3) Join A_1C_1 , cutting AB at F.
- (4) Join DF.
- (5) Use A as centre, A_1F as radius to draw an arc, cutting AC at E.
- (6) Join EF and DE.

Then ΔDEF is the required equilateral triangle.

Proof: Let
$$\angle ADC_1 = \theta$$
 $\angle ADC = \theta + 60^\circ$ (property of equilateral triangle)

 $= \angle A_1DC_1$
 $A_1D = AD$, $DC_1 = DC$ (property of equilateral triangle)

 $\therefore \Delta ACD \cong \Delta A_1DC_1$ (S.A.S.)

 $\angle DA_1F = \angle DAE$ (cor. $\angle s \cong \Delta s$)

 $DA_1 = DA$ (property of equilateral triangle)

 $A_1F = AE$ (by construction step (5))

 $\therefore \Delta ADE \cong \Delta A_1DF$ (S.A.S.)

 $DF = DE$ (cor. sides $\cong \Delta s$)

 $\angle EDF = \angle ADF + \angle ADE$
 $= \angle ADF + \angle A_1DF$ (cor. $\angle s \cong \Delta s$)

 $= \angle ADA_1$
 $= 60^\circ$ (property of equilateral triangle)

 $\therefore \Delta DEF$ is an isosceles triangle with $\angle EDF = 60^\circ$
 $\angle DFE = \angle DEF$ (base $\angle s$ isos. Δ)

 $= \frac{180^\circ - 60^\circ}{2}$ ($\angle s$ sum of Δ)

 $= 60^\circ$

 $\therefore \Delta DEF$ is the required equilateral triangle.

Remark:

It is possible that the vertices of ΔDEF lies outside ΔABC .

The following figure indicates that E lies on AC produced and F lies on BA produced.

Theorem 3 Given a triangle ABC with AB > AC. AH is the internal angle bisector of $\angle A$, cutting BC at H. AK is the external angle bisector of $\angle A$, cutting BC produced at K. Then

BH: CH = AB: AC = BK: CK

Let O_1 be the mid-point of HK. Use O_1 as centre, O_1H as radius to draw a circle. This circle is called the circle of Apollonius. Then

II. A lies on the circle.

Let G be any point on the semi-circular arc HAK. Then

GH is the internal angle bisector of $\angle BGC$ and GK is the external angle bisector of $\angle BGC$.

Proof: Produce BA to I. Let $\angle BAH = \angle CAH = x$, $\angle CAK = \angle KAI = y$

By Internal Angle Bisector theorem and External Angle Bisector theorem,

BH: CH = AB: AC = BK: CK

I is proved

 $x + x + y + y = 180^{\circ}$ (adj. \angle s on st. line)

$$\angle HAK = x + y = 90^{\circ}$$

A lies on the circle (converse, \angle in semi-circle)

II is proved

: HB : HC = KB : KC and $\angle HGK = 90^{\circ}$ (\angle in semi-circle)

Let
$$\angle GHC = \alpha$$
, $\angle GHB = 180^{\circ} - \alpha$, $\angle BGH = s$, $\angle CGH = t$, $\angle CGK = 90^{\circ} - t$

Produce BG to J, $\angle KGJ = 90^{\circ} - s$ (adj. $\angle s$ on st. line)

Apply sine rules on $\triangle GHB$ and $\triangle GHC$

$$\frac{BG}{\sin(180^{\circ} - \alpha)} = \frac{BH}{\sin s} \cdots (1), \quad \frac{CG}{\sin \alpha} = \frac{CH}{\sin t} \cdots (2)$$

Apply sine rules on $\triangle GKB$ and $\triangle GKC$

$$\frac{BG}{\sin \angle CKG} = \frac{BK}{\sin\left(180^{\circ} - 90^{\circ} + s\right)} \quad \cdots \quad (3), \quad \frac{CG}{\sin \angle CKG} = \frac{CK}{\sin\left(90^{\circ} - t\right)} \quad \cdots \quad (4)$$

$$\frac{(1)\times(4)}{(2)\times(3)}: \frac{BG}{\sin\alpha} \times \frac{CG}{\sin\alpha} \times \frac{\sin\alpha}{CG} \times \frac{\sin\alpha}{BG} \times \frac{CKG}{BG} = \frac{BH}{\sin s} \times \frac{CK}{\cos t} \times \frac{\sin t}{CH} \times \frac{\cos s}{BK}$$

$$\therefore$$
 By I, $\frac{BH}{CH} = \frac{BK}{CK}$ \therefore $1 = \frac{\tan t}{\tan s}$

 $\tan s = \tan t$

s = t

III is proved.

Theorem 4 Use the same notation as in theorem 3.

CJ is the internal angle bisector of $\angle C$, cutting AB at J. CI is the external angle bisector of $\angle C$. Let O_2 be the mid-point of IJ. Use O_2 as centre, O_2J as radius to draw another Apollonius circle.

Suppose the two circles intersect at P inside $\triangle ABC$.

Let the feet of perpendiculars from P to BC, CA and AB be D, E and F respectively. Join DE, EF and DF.

Then ΔDEF is the equilateral triangle with minimum perimeter on ΔABC .

First we shall show that ΔDEF is an equilateral triangle

Proof: P lies on the intersection of two circles.

By theorem 3.1 and 3.3,
$$\frac{BH}{CH} = \frac{BP}{CP}$$
 (5) and $\frac{BH}{CH} = \frac{AB}{AC}$ (6)

$$(5) = (6): \quad \frac{BP}{CP} = \frac{AB}{AC}$$

$$\Rightarrow AC \cdot BP = AB \cdot CP \cdot \cdots (7)$$

$$\frac{BJ}{AJ} = \frac{BP}{AP}$$
 (8) and $\frac{BJ}{AJ} = \frac{BC}{AC}$ (9)

$$(8) = (9): \quad \frac{BP}{AP} = \frac{BC}{AC}$$

$$\Rightarrow AC \cdot BP = BC \cdot AP \cdot \cdots \cdot (10)$$

$$(7) = (10): AC \cdot BP = AB \cdot CP = BC \cdot AP \cdot \cdots \cdot (11)$$

$$\therefore$$
 $\angle CDP + \angle CEP = 90^{\circ} + 90^{\circ}$ (by construction)

∴ CDPE is a cyclic quadrilateral (opp. ∠s supp.) ····· (*)

CP is the diameter of the circle *CDE* (converse, \angle in semi-circle)

In
$$\triangle CDE$$
, $\frac{DE}{\sin C} = CP$ (sine formula)

$$DE = CP \cdot \sin C \cdot \cdots \cdot (12)$$

Similarly, $EF = AP \cdot \sin A$, $DF = BP \cdot \sin B \cdot \cdots (12)$

where r is the circumradius

$$\Rightarrow \sin C = \frac{AB}{2r}, \sin A = \frac{BC}{2r}, \sin B = \frac{CA}{2r} \cdots (13)$$

Sub. (13) into (12):
$$DE = \frac{AB \cdot CP}{2r}$$
, $EF = \frac{BC \cdot AP}{2r}$, $DF = \frac{AC \cdot BP}{2r}$ ····· (14)

Sub. (11) into (14), we have DE = EF = FD

 $\therefore \Delta DEF$ is an equilateral triangle.

Next, we are going to show that the length of *DE* is the least.

Let *S* be any point on *BC* other than *D*.

Use theorem 2 to construct an equilateral ΔRST on ΔABC

Join PE, PR, PD, PS.

Use PR as diameter to draw a circle C_1 .

Use PD as diameter to draw another circle C_2 .

The two circles intersect again at Q.

 $\angle PER = 90^{\circ}$ (by construction in theorem 4 on Page 5)

 $\angle PDS = 90^{\circ}$ (by construction in theorem 4 on Page 5)

E lies on C_1 and D lies on C_2 . (converse, \angle in semi-circle)

$$\angle PQR = 90^{\circ}$$
, $\angle PQS = 90^{\circ}$ (\angle in semi-circle)

$$\angle PQR + \angle PQS = 180^{\circ}$$

 $\therefore ROS$ is a straight line

Let
$$\angle DPS = \alpha$$

 $\angle DQS = \alpha$ (\angle s in the same segment)

$$\angle EQR = \alpha$$
 (vert. opp. \angle s)

 $\angle EPR = \alpha$ (\angle s in the same segment)

$$\angle RPS = \alpha + \angle DPR = \angle DPE \cdots (15)$$

: CDPE is a cyclic quadrilateral (by (*))

$$\therefore$$
 $\angle DPE + \angle DCE = 180^{\circ}$ (opp. \angle s cyclic quad.)

$$\angle RPS + \angle DCE = 180^{\circ} \text{ (by (15))}$$

∴ CRPS is a cyclic quadrilateral (opp. ∠s supp.)

Construct the circumcircle of CRPS.

In
$$\triangle CSR$$
, $\frac{RS}{\sin C} = 2k$, where k is the circumradius

Claim: CP < 2k

Proof: Otherwise, CP = 2k = diameter of the circumcircle

$$\angle PRC = 90^{\circ} (\angle \text{ in semi-circle})$$

$$\angle PER + \angle EPR = \angle PRC \text{ (ext. } \angle \text{ of } \Delta)$$

$$90^{\circ} + \angle EPR = 90^{\circ}$$

which is a contradiction

$$\therefore SR = 2k \sin C \cdot \cdot \cdot \cdot (16)$$

$$= DE$$
 (by (12))

 \therefore The equilateral triangle *DEF* has the minimum perimeter.

В