To construct an equilateral triangle on the 3 concentric circles C_1 , C_2 , C_3 whose radii are a, b, c, where a > b > c and $b + c \ge a$ with a common centre O. Created by Mr. Francis Hung on 20110119. Last updated: 2021-09-29 Let *A* be any point on the largest circle. The proof is completed. - (1) Use A as centre, a as radius to draw a circle cutting C_1 at P. - (2) Use P as centre, c as radius to draw a circle cutting C_2 at B. - (3) Rotate *B* anticlockwise 60° about *A* to *C* (*O*, *C* lie on the same side of *AB*) Join *AC*, *BC*. Then $\triangle ABC$ is the required equilateral triangle. Proof: By step 3, $\triangle ABC$ is an equilateral triangle. It is sufficient to prove that C lies on C_3 . $$AB = AC$$ (By step 3) $$\angle BAC = 60^{\circ}$$ (By step 3) $$OA = OP$$ (radii of C_1) $$AO = AP$$ (radii in step 1) $$\angle OAP = 60^{\circ} = \angle BAC$$ ($OA = OP = AP$) $$\angle BAO = 60^{\circ} - x$$ $$\angle CAO = x$$ $$\triangle ABP \cong \triangle ACO$$ (S.A.S.) $$PB = CO$$ (corr. sides, $\cong \triangle$'s) $$C \text{ lies on the circle } C_3.$$ ## Remark (1) The circles in step 1 and step 2 cut C_1 and C_2 at two different points. There are more than one possible equilateral triangles ABC with different sizes. - (2) If $b + c \le a$, then $\triangle OBP$ cannot be formed, we cannot construct the equilateral triangle. - (3) At limiting position, b + c = a, the circle in step 2 touches C_2 at B. O, B, P are collinear. The above proof remains vaild.