1990 HG6

設 N! 為首 N 個自然數的乘積,即 $N! = 1 \times 2 \times 3 \times \cdots \times N$ 。

若 k 是正整數使得 $30! = 2^k \times -$ 奇數, 求 k 的值。

Let *N*! denotes the product of the first *N* natural numbers,

i.e. $N! = 1 \times 2 \times 3 \times ... \times N$.

If k is a positive integer such that $30! = 2^k \times$ an odd integer, find the value of k.

1994 FG7.1 1996HI3

在 $1\times2\times3\times...\times100$ 的積數中,最末的 a 個位都是 0。求 a 的值。

There are a zeros at the end of the product $1\times2\times3\times...\times100$. Find the value of a.

2004 FG1.1

已知 a 為整數。若 50! 能被 2^a 整除,求 a 的最大可能的值。

Given that a is an integer. If 50! is divisible by 2^a ,

find the largest possible value of a.

2008 FG2.3

若 14! 能被 6^k 整除,其中 k 為整數, 求 k 的最大可能值。

If 14! is divisible by 6^k , where k is an integer, find the largest possible value of k.

2011 HG7

已知 $n! = n \times (n-1) \times (n-2) \times ... \times 3 \times 2 \times 1$ 且 $\frac{2011!}{10^k}$ 是整數,其中 k 是正整數。

若 S 是 k 的所有可能值之和, 求 S 的值。

Given that $n! = n \times (n-1) \times (n-2) \times \dots \times 3 \times 2 \times 1$ and $\frac{2011!}{10^k}$ is an integer, where k

is a positive integer.

If S is the sum of all possible values of k, find the value of S.

2012 FI1.4

 \ddot{a} \ddot{a} \ddot{a} \ddot{b} \ddot{b}

If $280! = 10^D k$, where *D* and *k* are integers such that *k* is not divisible by 10, find the value of *D*.

2012 FG1.3

若 90! 可被 10^k 整除,當中 k 是正整數, \bar{x} k 的最大可能值。

If 90! is divisible by 10^k , where k is a positive integer,

find the greatest possible value of k.

2018 FI2.2

 $\ddot{a} b$ 是乘積 $40 \times (40-1) \times (40-2) \times \cdots \times 2 \times 1$ 的尾隨零的數量。求 b 的值。 $40 \times (40-1) \times (40-2) \times \cdots \times 2 \times 1 = \overline{\cdots * \underbrace{00 \cdots 0}_{"0" \text{ flyb} \equiv \mathbb{R}^b} }, \quad *$ 代表非零數字。

If the number of trailing zeros of the product $40 \times (40-1) \times (40-2) \times \cdots \times 2 \times 1$ is b, determine the value of b.

$$40 \times (40-1) \times (40-2) \times \cdots \times 2 \times 1 = \overline{\cdots * \underbrace{00 \cdots 0}_{\text{The number of "0" is } b}}, * represents a non-zero digit.$$

Answers

1990 HG6 26	1994FG7.1 1996HI3 24	2004 FG1.1 47	2008 FG2.3 5	2011 HG7 125751
2012 FI1.4 69	2012 FG1.3	2018 FI2.2		