1983 FI4.4

把一 3 cm 的鐵綫屈曲成一半徑為 1 cm 的扇形。問扇形的圓心角為何? A wire of 3 cm is bent to form a sector of radius 1 cm.

What is the angle of the sector in degrees (correct to the nearest degree)?

1986 FI1.1

The given figure shows a circle of radius 18 cm, centre O.

If $\angle AOB = \frac{\pi}{3}$ and the length of arc APB is $a\pi$ cm,

find the value of a.

1988 FI3.2

附圖所示圓形的半徑是 2h cm,圓心是 O。

 $\angle AOB = \frac{\pi}{3}$,且扇形 AOBP 的面積是 $k\pi$ cm²,求 k 的值。

The given figure shows a circle of radius 6 cm, centre O.

If $\angle AOB = \frac{\pi}{3}$, and the area of sector AOBP is $k\pi$ cm²,

find the value of k.

1990 HI18

如圖,三個半圓的直徑分別為 $a \cdot 2a$ 及 $3a \cdot x$ 陰影部分的面積與沒有陰影部分的面積的比值。 The figure shows 3 semi-circles of diameters a, 2a and 3a respectively. Find the ratio of the area of the shaded part to that of the unshaded part.

1994 HI9

如圖,XY=3、YZ=4 及 ZX=5。現以 M、 N、O 為圓心作半圓,其中 M、N、O 分別為 XY、YZ、ZX 的中點。試求陰影部分面積之 M

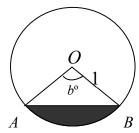
In the figure, XY = 3, YZ = 4 and ZX = 5. Semicircles are constructed with M, N, O as centres as shown where M, N, O are

mid-points of XY, YZ and ZX respectively. Find the sum of the shaded areas.

1998 HG8

在圖中,四個半徑為 1 的圓緊緊地放在一個正方形內。 求陰影部分的面積。(答案準確至最接近之整數)。 In the figure, four circles with radius 1 touch each other inside a square. Find the shaded area.

1998 FG1.1


若扇形面積 s=4 cm²、扇形半徑 r=2 cm 及扇形的弧長 A=p cm,求 p 的數值。 If the area of a given sector s=4 cm², the radius of this sector r=2 cm and the arc length of this sector A=p cm, find the value of p.

1998 FG4.2

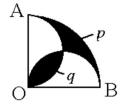
圖中的圓之圓心為O,半徑為1,A和B是圓形上的點。已知 $\frac{陰影部分}{沒有陰影部分} = \frac{\pi-2}{3\pi+2}$ 且 $\angle AOB = b^{\circ}$,求b的數值。

(Correct your answer to the nearest integer.)

The circle in the figure has centre O and radius 1, A and B are points on the circle. Given that

Area of shaded part $=\frac{\pi-2}{3\pi+2}$ and $\angle AOB = b^{\circ}$, find the value of b.

1999 HI1


有一圓,其圓周是 14π cm。 若一弧所對的圓心角是 $\frac{1}{7}$ 個弧度,設這弧的長度是 X cm,求 X 的數值。

The circumference of a circle is 14π cm. Let X cm be the length of an arc of the circle, which subtends an angle of $\frac{1}{7}$ radian at the centre. Find the value of X.

1999 FI2.3

在圖中,OAB 為四分之一圓,且以 OA、OB 為直徑繪出 兩個半圓,若 p、q 代表陰影部分之面積,其中 $p=1~{\rm cm}^2$ 及 $q=c~{\rm cm}^2$,求 c 之值。

In the figure, OAB is a quadrant of a circle and semi-circles are drawn on OA and OB. If p, q denotes the areas of the shaded regions, where p = 1 cm² and q = c cm², find the value of c.

N

Arc and Sector (HKMO Classified Questions by topics)

2000 FG4.2

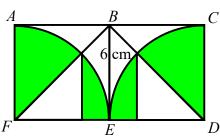
在圖中,ABCD 為長方形,AB =
$$\sqrt{\frac{8+\sqrt{64-\pi^2}}{\pi}}$$
,

$$BC = \sqrt{\frac{8 - \sqrt{64 - \pi^2}}{\pi}} \circ BE \circ BF$$
 分別是以 $C \circ A$ 為

圓心的弧。若b是陰影部份之面積,求b的值。 In Figure 4, ABCD is a rectangle with

$$AB = \sqrt{\frac{8 + \sqrt{64 - \pi^2}}{\pi}}$$
 and $BC = \sqrt{\frac{8 - \sqrt{64 - \pi^2}}{\pi}}$. BE and BF are the arcs of

circles with centres at C and A respectively.

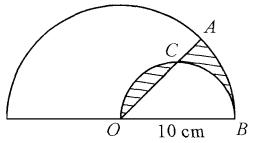

If b is the total area of the shaded parts, find the value of b.

2001 HI10

如圖,ABEF、BCDE 為正方形,BE=6 cm, \widehat{AE} 及 \widehat{CE} 是分別以 F、D 為 圓心畫出來的弧。如果圖中陰影部分的總面積為 S cm²,求 S 的數值。 (取 $\pi=3$)

In the figure, ABEF, BCDE are two squares, BE = 6 cm, and \widehat{AE} and \widehat{CE} are the arcs drawn with centres F and D respectively. If the total area of the shaded parts is $S \text{ cm}^2$,

find the value of S . (Assume $\pi = 3$.)



2004 HI6

在圖中,大半圓的圓心是O,半徑是10 cm,OB是小半圓的直徑,C是弧OB的中點且在綫段OA上。設陰影部分的面積是 $K \text{ cm}^2$,求K的值。(取 $\pi = 3$)

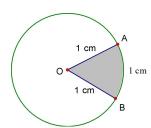
In the figure, O is the centre of the bigger semicircle with radius 10 cm, OB is the diameter of the smaller semicircle and C is the midpoint of arc OB and it lies on the segment OA. Let the area of the shaded region be $K \text{ cm}^2$,

find the value of K. (Take $\pi = 3$)

2005 HI8

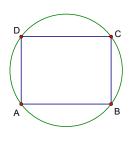
如圖,AB 垂直於 CD,其交點 O 是大圓的圓心,而四個小圓的圓心分別在 AB 和 CD 上。已知大圓的半徑是 $1~{\rm cm}$,四個小圓的半徑是 $\frac{1}{2}~{\rm cm}$ 。

若陰影部分的面積是 $R \text{ cm}^2$, 求 R 的值。(取 $\pi = 3$)


In the figure, AB is perpendicular to CD, their intersection point O is the centre of the large circle and the centres of the four circles lies on either AB or CD. Given also that the radius of the large circle is 1 cm and the radius of each of the four small circles is $\frac{1}{2}$ cm.

If the area of the shaded region is $R \text{ cm}^2$, find the value of R. (take $\pi = 3$)

2006 FI1.2


如圖,O 是半徑 1 cm 的圓的圓心。若弧 AB 的長度是 1 cm 及著色部份 扇形 OAB 的面積是 b cm 2 ,求 b 的值。(取 $\pi=3$)

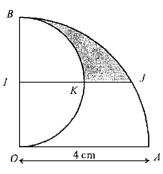
In the figure, O is the centre of the circle with radius 1 cm. If the length of the arc AB is equal to 1 cm and the area of the shaded sector OAB is equal to $b \text{ cm}^2$, find the value of b. (Take $\pi = 3$)

2006 FI3.2

如圖,ABCD 是圓內長方形,AB=8 cm 及 AD=6 cm。若圓形的圓周是 R cm,求 R 的值。(取 $\pi=3$)
In the figure, ABCD is an inscribed rectangle, AB=8 cm and AD=6 cm. If the circumference of the circle is R cm, find the value of R. (Take $\pi=3$)

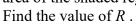
2008 FI3.3

右圖由三個大小相同互切的圓所組成,三個圓的半徑均是3 cm。若陰影部分的周界是C cm,求 C 的值。(取 $\pi = 3$)


The figure is formed by three identical circles touching one another, the radius of each circle is 3 cm. If the perimeter of the shaded region is C cm, find the value of C. (Take $\pi = 3$)

2009 FG3.4

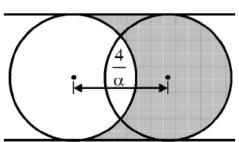
如圖,扇形 OAB 的半徑為 4 cm $及 \angle AOB$ 為直角。 B 設以 OB 為直徑的半圓,其圓心為 I 且 IJ//OA 及 IJ 與該半圓相交於 K。若陰影部分的面積為 T cm²,求 T 的值。(取 $\pi=3$)


In Figure 2, the sector OAB has radius 4 cm and $\angle AOB$ is a right angle. Let the semi-circle with diameter OB be centred at I with IJ//OA, and IJ intersects the semi-circle at K. If the area of the shaded region is T cm², find the value of T. ($\pi = 3$)

2009 FG4.2

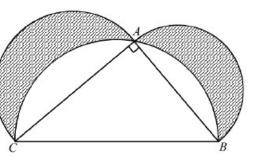
如圖,設 $AB \times AC$ 及BC為相應半圓的直徑。若AC = BC = 1 cm 及陰影部分的面積是R cm²,求R 的值。

In the figure, let AB, AC and BC be the diameters of the corresponding three semi-circles. If AC = BC = 1 cm and the area of the shaded region is $R \text{ cm}^2$.



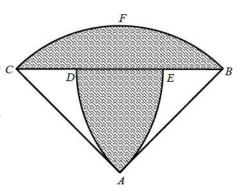
2014 FI2.2

右圖為兩個半徑為 4的圓,其圓心相隔 3。求陰影部分的面積 β。


In the figure, two circles of radii 4 with their centres placed apart by 3.

Determine the area β , of the shaded region.

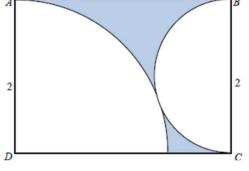
2019FG4.1


如圖所示, ΔABC 是一直角三角形,其中 AC=8,BC=10。以 AB、AC和 BC 為直徑分別畫了三個半圓。若陰 影部分的總面積是 α ,求 α 的值。 In the figure, ΔABC is a right-angled triangle with AC=8 and BC=10.

Semi-circles are drawn with AB, AC and BC as diameters. If the total shaded area is α , determine the value of α .

2023 FG1.3

右圖中,ABC 是一個等腰三角形,其中 $\angle A = 90^{\circ}$ 及 $AB = 2^{\circ}$ 圖中有三個弧,它 們分別是弧BFC、弧AD 和弧AE。弧 BFC° 是以A 為圓心、AB 為半徑畫出的。弧AD 是以B 為圓心、AB 為半徑畫出的。弧AE 是以C 為圓心、AC 為半徑畫出的。 求這個圖形的陰影面積。 (取 $\pi = 3$)


In the above figure, ABC is an isosceles triangle, where $\angle A = 90^{\circ}$ and AB = 2. The figure includes three arcs: arc BFC, arc AD, and arc AE. Arc BFC has a radius of AB and is drawn from centre A. Arc AD is drawn from centre B with radius AB, while arc AE is drawn from centre C with radius AC. Find the area of this shaded region. (Take $\pi = 3$)

2024 FG4.4

右圖空白部分由一個四分一圓和一個 半圓互相外切組成。ABCD是一個長方 形。求陰影部分的面積。

The unshaded part in the diagram on the right is made up of a quarter-circle and a semi-circle which touch each other externally. *ABCD* is a rectangle.

Find the area of the shaded part.

Answer

1983 FI4.4	1986 FI1.1	1988 FI3.2	1990 HI18	1994 HI9
57°	6	6	1:2	6
1998 HG8	1998 FG1.1	1998 FG4.2	1999 HI1	1999 FI2.3
1	4	90	1	1
2000 FG4.2 3	2001 HI10 36	2004 HI6 12.5	2005 HI8 1	2006 FI1.2 $\frac{1}{2}$
2006 FI3.2 30	2008 FI3.3 45	2009 FG3.4 $5-2\sqrt{3}$	2009 FG4.2 $\frac{1}{2}$	2014 FI2.2 24
2019 FG4.1 24	2023 FG1.3 2	$2024 \text{ FG4.4} \\ 4\sqrt{2} - \frac{3\pi}{2}$		