Individual Events

mariatal Events															
I	1	а	258	12	а	17	13	а	9	I4	x	$\frac{3}{2}$	15	а	360
		b	15		b	136		b	15		у	1		b	36
		c	225		c	15		c	11		z	8		c	54
		d	75		probability	$\frac{1}{5}$		d	73.5		logz y	0		d	36

Group Events

G6	log 6	a+b	G7	surface area	320π cm ²	G8	пгэпп	23485	G9	A	15	G10	No. of digits	10
	3.5 <i>a</i> +3.5 <i>c</i>	3.5		volume	$\frac{2000\pi}{3}\mathrm{cm}^3$		ans	חםר		В	56		smaller no.	63
	$\frac{\log 30}{\log 15}$	$\frac{a+b+c}{b+c} \text{ or } \frac{b+1}{b+1-a}$		volume	$\frac{2}{3}\pi r^2 h$		word	CHRISTMAS		C	8		bigger no.	65
	(log15) ² log15	(b+c)(b+c-1) or (b-a+1)(b-a)		ratio	3:1		message	JOIN US		X	0		bigger no.	$3^{\frac{1}{3}} \times 8^{\frac{1}{8}}$

Individual Event 1

I1.1 Find *a* if a = 5 + 8 + 11 + ... + 38.

This is an arithmetic series with first term = 5, common difference = 3

Let *n* be the number of terms. $38 = 5 + (n-1)(3) \Rightarrow n = 12$

$$a = \frac{1}{2}(5+38)\cdot 12 = 258$$

I1.2 Let b = the sum of the digits of the number a. Find b.

$$b = 2 + 5 + 8 = 15$$

I1.3 If $c = b^2$, find c.

$$c = 15^2 = 225$$

I1.4 Given that 3d = c, find d.

$$3d = 225 \Rightarrow d = 75$$

Put
$$x = -4$$
 into the polynomial: $2(-4)^2 + 3(-4) + 4d = 0$

$$d = -5$$

Individual Event 2

I2.1 Two cards are drawn at random from a pack and not replaced.

If the probability that both cards are hearts is $\frac{1}{a}$, find a.

P(both hearts) =
$$\frac{1}{a} = \frac{13}{52} \times \frac{12}{51} = \frac{1}{17}$$

$$a = 17$$

I2.2 If there are b ways of choosing 15 people from 'a' people, find b.

$$b = C_{15}^{17} = \frac{17 \times 16}{2} = 136$$

12.3 If c signals can be made with $\frac{b}{2a}$ flags of different colours by raising at least one of the flags, without

considering the arrangement of colours, find c.

$$\frac{b}{2a} = \frac{136}{2 \cdot 17} = 4$$

The following are different patterns:

0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101, 1111,

where '0' in the ith position represents the ith colour flag is put down and '1' represents the ith colour flag is raised. c = 15

12.4 There are c balls in a bag, of which 3 are red. What is the probability of drawing a red ball?

$$P(\text{red ball}) = \frac{3}{15} = \frac{1}{5}$$

Individual Event 3

I3.1 Find *a* in the figure.

13.2 Find b if
$$\frac{\sin(4b)^{\circ}}{\cos(4b)^{\circ}} = \sqrt{\sqrt{a}}$$
 (0 < 4b < 90)
 $\tan (4b)^{\circ} = \sqrt{3}$
 $4b = 60 \Rightarrow b = 15$

13.3 Find c from the sequence:
$$\frac{3}{12}$$
, $\frac{7}{34}$, $\frac{c}{56}$, $\frac{b}{78}$.

$$\frac{3}{12}$$
, $\frac{7}{34}$, $\frac{c}{56}$, $\frac{15}{78}$
 $12 + 22 = 34$, $34 + 22 = 56$, $56 + 22 = 78$
 $3 + 4 = 7$, $7 + 4 = 11$, $11 + 4 = 15$
 $c = 11$

13.4 In the figure,
$$O$$
 is the centre, B and C are points on the circumference. $\angle BOC = 3c^{\circ}$, $\angle OBC = d^{\circ}$. Find d .

$$\angle BCO = d^{\circ} \text{ (base } \angle s \text{ isos. } \Delta\text{)}$$

 $2d + 33 = 180 \text{ (} \angle s \text{ sum of } \Delta\text{)}$
 $d = 73.5$

Individual Event 4

14.1 Find x if
$$x = \frac{\log a^3}{\log a^2}$$
 where $a > 0$ and $a \ne 1$.

$$x = \frac{\log a^3}{\log a^2} = \frac{3\log a}{2\log a} = \frac{3}{2}$$

I4.2 If
$$y - 1 = \log x + \log 2 - \log 3$$
, find y.

$$y - 1 = \log \frac{3}{2} + \log 2 - \log 3$$

$$y = \log\left(\frac{3}{2} \times \frac{2}{3}\right) + 1 = \log 1 + 1 = 1$$

I4.3 What is Z if
$$\log_2 Z^y = 3$$
?

$$\log_2 Z = 3 \Rightarrow Z = 2^3 = 8$$

I4.4 Find
$$\log_z y$$
.

$$log_8 1 = 0$$

Individual Event 5

I5.1 Let the sum of the marked angles be a° . Find a.

The figure shows two equilateral triangles inscribed in a regular hexagon.

Each interior angle of the hexagon = 120°

Each angle of an equilateral triangle = 60°

Each marked angle = $(120^{\circ} - 60^{\circ}) \div 2 = 30^{\circ}$

There are 12 marked angles.

$$a = 12 \times 30 = 360$$

I5.2 ∠ACE =
$$\left(\frac{a}{10}\right)^{\circ}$$
. Find b.
∠DCE = 180° – 20° – 70° = 90° (∠s sum of Δ)
∠ACE = 36°
∠ACD = 90° – 36°= 54°
∠ACB = 180° – 30° – 60° = 90° (∠s sum of Δ)
b = 90 – 54 = 36

15.3 If
$$HK = KL$$
, $LM = MN$, $HK // MN$, find c .
 $\angle KHL = b^{\circ} = 36^{\circ}$ (base $\angle s$ isos. Δ)
 $\angle LKH = 180^{\circ} - 36^{\circ} - 36^{\circ} = 108^{\circ}$ ($\angle s$ sum of Δ)
 $\angle LMN = 180^{\circ} - 108^{\circ} = 72^{\circ}$ (int. $\angle s$, $NM // HK$)
 $\angle MNL = c^{\circ}$ (base $\angle s$ isos. Δ)
 $c + c + 72 = 180$ ($\angle s$ sum of Δ)
 $c = 54$

Group Event 6

Let $\log 2 = a$, $\log 3 = b$, $\log 5 = c$.

G6.1 Express log 6 in terms of
$$a$$
, b and c . log $6 = \log 2 + \log 3 = a + b$

G6.2 Evaluate 3.5
$$a$$
 + 3.5 c .
3.5 a + 3.5 c = 3.5 log 2 + 3.5 log 5
= 3.5 log(2×5) = 3.5

G6.3 Express
$$\frac{\log 30}{\log 15}$$
 in terms of a , b and c .

$$\frac{\log 30}{\log 15} = \frac{\log 3 + \log 10}{\log 3 + \log 10 - \log 2} = \frac{b+1}{b+1-a} \quad \text{or} \quad \frac{\log 30}{\log 15} = \frac{\log 2 + \log 3 + \log 5}{\log 3 + \log 5} = \frac{a+b+c}{b+c}$$

G6.4 Express
$$(\log 15)^2 - \log 15$$
 in terms of a , b and c .
 $(\log 15)^2 - \log 15 = \log 15(\log 15 - 1) = (\log 3 + \log 10 - \log 2)(\log 3 - \log 2)$
 $= (b - a + 1)(b - a)$
OR $(\log 15)^2 - \log 15 = \log 15(\log 15 - 1) = (\log 3 + \log 5)(\log 3 + \log 5 - 1) = (b+c)(b+c-1)$

Group Event 7

G7.1 Figure 1 shows a cone and a hemisphere.

OB = 12 cm, r = 10 cm. Express the surface area of the solid in terms of

The surface area = $2\pi r^2 + \pi rL = 320\pi$ cm²

Figure 1

G7.2 What is the volume of the hemisphere shown in figure 1? Give your answer in terms of π .

Volume = $\frac{2}{3} \pi r^3 = \frac{2000\pi}{3} \text{ cm}^3$

G7.3 In figure 2, a right circular cone stands inside a right cylinder of same base radius r and height h. Express the volume of the space between them in terms of r and h.

Volume of space = $\pi r^2 h - \frac{1}{2} \pi r^2 h$ $=\frac{2}{2}\pi r^2h$

Figure 2

G7.4 Find the ratio of the volume of the cylinder to that of the cone.

Ratio = $\pi r^2 h : \frac{1}{3} \pi r^2 h = 3 : 1$

Group Event 8

Given that:

1 stands for A

1	2	3
4	5	6
7	8	9

2 stands for *B*

25 stands for Y 26 stands for Z

G8.1 What number does the code $\Box \Box \Box \Box$ stand for?

 $\sqcup \sqcup \sqcup \sqcup \sqcup \sqcup$ stands for 23485

G8.2 Put Δ stands for zero. Calculate the following and give the answer in code.

 $(\sqcup \Delta)(\sqcup \Delta) + \sqcup \Gamma - \sqcup \Delta$ $=20\times40+19-30=789$ = \neg \sqcap Γ

G8.3 "3 8 18 9 19 20 13 1 19" stands for a word. What is it? 3 = C, 8 = H, 18 = R, 9 = I, 19 = S, 20 = T, 13 = M, 1 = A, 19 = S

The number stands for "CHRISTMAS"

G8.4 Decode the following message: $(\bot \Delta \ \bot \Box \ \Gamma \ \bot \)$ $(\bot \bot \ \bot \)$ There are two words in the message.

 $(\bigcup \Delta \bigcup \Box \bigcap \bigcup \Box)$ $(\bigcup \bigcup \bigcup \bigcup \Box) = (10 \quad 15 \quad 9 \quad 14)(21 \quad 19) = JOIN US$

Group Event 9

G9.1 Find A from the sequence: 0, 3, 8, A, 24, 35, ...

$$1^2 - 1, 2^2 - 1, 3^2 - 1, 4^2 - 1, 5^2 - 1, 6^2 - 1, \dots A = 4^2 - 1 = 15$$

G9.2 The roots of the equation $x^2 - Ax + B = 0$ are 7 and C. Find B and C.

$$x^2 - 15x + B = 0$$

$$7 + C = 15 \Rightarrow C = 8$$

$$B = 7C = 56$$

G9.3 If $\log_7 B = \log_7 C + 7^X$; find *X*.

$$\log_7 56 = \log_7 8 + 7^X$$

$$7^X = \log_7 (56/8) = \log_7 7 = 1$$

$$X = 0$$

Group Event 10

G10.1 How many digits are there in the number N if $N = 2^{12} \times 5^{8}$?

Reference: 1992HI17, 2012 HI4

$$N = 2^{12} \times 5^8 = 2^4 \times 10^8 = 16 \times 10^8$$

There are 10 digits.

G10.2 If $(2^{48} - 1)$ is divisible by two whole numbers between 60 and 70, find them.

$$2^{48} - 1 = (2^{24} + 1)(2^{24} - 1) = (2^{24} + 1)(2^{12} + 1)(2^{12} - 1) = (2^{24} + 1)(2^{12} + 1)(2^{6} + 1)(2^{6} - 1)$$

Smaller number = $2^6 - 1 = 63$, larger number = $2^6 + 1 = 65$.

G10.3 Given $2^{\frac{1}{2}} \times 9^{\frac{1}{9}}$, $3^{\frac{1}{3}} \times 8^{\frac{1}{8}}$. What is the greatest number?

$$2^{\frac{1}{2}} \times 9^{\frac{1}{9}} = 2^{\frac{1}{2}} \times 3^{\frac{2}{9}}; \quad 3^{\frac{1}{3}} \times 8^{\frac{1}{8}} = 3^{\frac{1}{3}} \times 2^{\frac{3}{8}}$$

$$\frac{2^{\frac{1}{2}} \times 3^{\frac{2}{9}}}{3^{\frac{1}{3}} \times 2^{\frac{3}{8}}} = \frac{2^{\frac{1}{8}}}{3^{\frac{1}{9}}} = \frac{\left(2^{9}\right)^{\frac{1}{72}}}{\left(3^{8}\right)^{\frac{1}{72}}} = \left(\frac{512}{6561}\right)^{\frac{1}{72}} < 1$$

 $\therefore 3^{\frac{1}{3}} \times 8^{\frac{1}{8}} \text{ is the greatest.}$