Individual Events

SI	а	900	I1	а	10	12	а	$\frac{1}{2}$ (=0.5)	13	а	-7	I4	а	15	15	а	80
	b	7		b	1		b	5		b	6		b	8		b	4
	c	2		c	4		c	10		x	$\frac{1}{2}$ (=0.5)		c	4		N	10
	d	9		d	-5		d	15		y	-1		d	12		x	144

Group Events

SG	а	2	G6	p	10	G7	p	75	G8	M	1	G9	x	$\frac{1}{100}$	G10	A	50
	b	*136 see the remark		q	15		q	$\frac{1}{2}$ (=0.5)		N	6		A	52		S	2
	c	-6		r	24		a	2		R	8		m	501		n	7
	d	7		S	27		m	14		Y	2		P	36		d	5

Sample Individual Event (1988 Sample Individual Event)

SI.1 In the given diagram, the sum of the three marked angles is a° . Find a.

Reference: 1987 FSG.3, 1989 FSI.1

Sum of interior angles of a triangle = 180° angle sum of three vertices = $3 \times 360^{\circ} = 1080^{\circ}$ a = 1080 - 180 = 900

SI.2 The sum of the interior angles of a regular b-sided polygon is a° . Find b.

Reference 1989 FSI.2

$$a = 900 = 180 \times (b - 2)$$

 $b = 7$

SI.3 If
$$8^b = c^{21}$$
, find c .
 $8^7 = c^{21}$
 $2^{21} = c^{21}$
 $c = 2$

SI.4 If
$$c = \log_d 81$$
, find d .
 $2 = c = \log_d 81$ and $d > 0$
 $d^2 = 81$
 $d = 9$

Individual Event 1

I1.1 If $100a = 35^2 - 15^2$, find a.

Reference: 1987 FSG.1, 1988 FI2.2

$$100a = (35 + 15)(35 - 15) = 50 \times 20 = 1000$$

 $a = 10$

11.2 If
$$(a-1)^2 = 3^{4b}$$
, find b.
 $9^2 = 3^{4b}$
 $4b = 4$
 $\Rightarrow b = 1$

II.3 If b is a root of
$$x^2 + cx - 5 = 0$$
, find c.
Put $x = 1$ into the equation: $1 + c - 5 = 0$

II.4 If
$$x + c$$
 is a factor of $2x^2 + 3x + 4d$, find d .
 $x + 4$ is a factor
Put $x = -4$ into the polynomial: $2(-4)^2 + 3(-4) + 4d = 0$
 $d = -5$

Individual Event 2

12.1 If α , β are roots of $x^2 - 10x + 20 = 0$, find a, where $a = \frac{1}{\alpha} + \frac{1}{\beta}$.

$$\alpha + \beta = 10$$
, $\alpha\beta = 20$

$$a = \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = \frac{10}{20} = \frac{1}{2}$$

12.2 If $\sin \theta = a$ (0° < θ < 90°), and 10 $\cos 2\theta = b$, find b.

$$\sin \theta = \frac{1}{2}$$

$$\Rightarrow \theta = 30^{\circ}$$

$$b = 10 \cos 60^{\circ} = 5$$

I2.3 The point A(b, c) lies on the line 2y = x + 15. Find c.

Reference: 1984 FI2.3

Put
$$x = b = 5$$
, $y = c$ into the line: $2c = 5 + 15$

$$c = 10$$

12.4 If $x^2 - cx + 40 \equiv (x + k)^2 + d$, find d.

Reference: 1985 FG10.2, 1986 FG7.3, 1987 FSI.1, 1988 FG9.3

$$x^2 - 10x + 40 \equiv (x - 5)^2 + 15$$

$$k = -5, d = 15$$

Individual Event 3

I3.1 If a is the remainder when $2x^3 - 3x^2 + x - 1$ is divided by x + 1, find a.

$$a = 2(-1)^3 - 3(-1)^2 - 1 - 1 = -7$$

I3.2 If $b \text{ cm}^2$ is the total surface area of a cube of side (8 + a) cm, find b.

Similar Questions: 1984 FG9.2, 1985 FSI.2

$$8 + a = 1$$

$$b = 6$$

I3.3 One ball is taken at random from a bag containing b + 4 red balls and 2b - 2 white balls.

If x is the probability that the ball is white, find x.

There are
$$b + 4 = 10$$
 red balls and $2b - 2 = 10$ white balls

$$x = \frac{1}{2}$$

13.4 If $\sin \theta = x \ (90^{\circ} < \theta < 180^{\circ})$ and $\tan(\theta - 15^{\circ}) = y$, find y.

$$\sin \theta = \frac{1}{2}$$

$$\Rightarrow \theta = 150^{\circ}$$

$$y = \tan(\theta - 15^{\circ}) = \tan 135^{\circ} = -1$$

Individual Event 4

14.1 In figure 1, DE // BC. If AD = 4, DB = 6, DE = 6 and BC = a, find a.

$$\triangle ADE \sim \triangle ABC$$
 (equiangular)
 $\frac{a}{6} = \frac{10}{4}$ (ratio of sides, $\sim \Delta$'s)

$$a = 15$$

14.2 θ is an acute angle such that $\cos \theta = \frac{a}{17}$. If $\tan \theta = \frac{b}{15}$, find b.

$$b^2 = 17^2 - 15^2$$

$$b = 8$$

I4.3 If $c^3 = b^2$, find c. $c^3 = 8^2 = 64 = 4^3$

$$\Rightarrow c = 4$$

I4.4 The area of an equilateral triangle is $c\sqrt{3}$ cm². If its perimeter is d cm, find d.

Reference: 1985 FSI.4, 1986 FSG.3, 1987 FG6.2, 1988 FG9.1

Each side =
$$\frac{d}{3}$$
 cm

$$\frac{1}{2} \cdot \left(\frac{d}{3}\right)^2 \sin 60^\circ = c\sqrt{3} = 4\sqrt{3}$$

$$d = 12$$

Individual Event 5

I5.1 In Figure 2, find *a*.

$$100 + (180 - a) + 50 + 110 = 360$$
 (sum of ext. ∠ of Δ)
 $a = 80$

I5.2 If $b = \log_2\left(\frac{a}{5}\right)$, find b.

$$2^b = 16$$
$$b = 4$$

I5.3 A piece of string, 20 m long, is divided into 3 parts in the ratio of b-2:b:b+2. If N m is the length of the longest portion, find *N*.

$$b-2:b:b+2=2:4:6=1:2:3$$

$$N = 20 \times \frac{3}{1+2+3} = 10$$

15.4 Each interior angle of an *N*-sided regular polygon is x° . Find *x*. $x = \frac{180 \times (10 - 2)}{10} = 144$

$$x = \frac{180 \times (10 - 2)}{10} = 144$$

Sample Group Event

SG.1 The sum of 2 numbers is 20, their product is 10. If the sum of their reciprocals is a, find a.

Reference: 1983 FG6.3, 1985 FSI.1, 1986 FSG.1

Let the 2 numbers be x and y.

$$x + y = 20$$
 and $xy = 10$

$$a = \frac{1}{x} + \frac{1}{y} = \frac{x+y}{xy} = 2$$

SG.2 $1^2 - 1 = 0 \times 2$, $2^2 - 1 = 1 \times 3$, $3^2 - 1 = 2 \times 4$, ..., $b^2 - 1 = 135 \times 137$. If b > 0, find b.

Reference: 1983 FI10.1, 1991 FI2.1

$$135 \times 137 = (136 - 1) \times (136 + 1) = 136^2 - 1$$

$$b = 136$$

Remark The original question is:

$$1^2 - 1 = 0 \times 2$$
, $2^2 - 1 = 1 \times 3$, $3^2 - 1 = 2 \times 4$, ..., $b^2 - 1 = 135 \times 137$, find b.

b = 136 or -136, there are 2 different answers!

SG.3 If the lines x + 2y + 1 = 0 and cx + 3y + 1 = 0 are perpendicular, find c.

Reference: 1983 FG9.3, 1985 FI4.1, 1986 FSG.2, 1987 FG10.2, 1988 FG8.2

$$-\frac{1}{2} \times \left(-\frac{c}{3}\right) = -1 \Rightarrow c = -6$$

SG.4 The points (2, -1), (0, 1), (c, d) are collinear. Find d.

Reference: 1984 FG7.3, 1986FG6.2, 1987 FG7.4, 1989 HG8

$$\frac{d-1}{-6} = \frac{1 - \left(-1\right)}{0 - 2}$$

$$d = 7$$

Group Event 6

G6.1 If
$$p = \frac{21^3 - 11^3}{21^2 + 21 \times 11 + 11^2}$$
, find p . (Similar questions: 1985 FG7.1)

$$p = \frac{21^3 - 11^3}{21^2 + 21 \times 11 + 11^2} = \frac{(21 - 11)(21^2 + 21 \times 11 + 11^2)}{21^2 + 21 \times 11 + 11^2} = 10$$

G6.2 If p men can do a job in 6 days and 4 men can do the same job in q days, find q.

10 men can do a job in 6 days.

1 man can do a job in 60 days

4 men can do a job in 15 days $\Rightarrow q = 15$

G6.3 If the q^{th} day of March in a year is Wednesday and the r^{th} day of March in the same year is Friday, where 18 < r < 26, find r. (**Reference: 1985 FG9.3, 1987 FG6.4, 1988 FG10.2**)

15th March is Wednesday

17th March is Friday

$$24^{\text{th}}$$
 March is Friday $\Rightarrow r = 24$

G6.4 If
$$a*b = ab + 1$$
, and $s = (3*4)*2$, find s. (Reference: 1985 FSG.1)

$$3*4 = 3\times4 + 1 = 13$$

$$s = (3*4)*2 = 13*2 = 13 \times 2 + 1 = 27$$

Group Event 7 (1988 Sample Group Event)

G7.1 The acute angle between the 2 hands of a clock at 3:30 a.m. is p° . Find p.

Reference: 1985 FI3.1 1987 FG7.1, 1989 FI1.1, 1990 FG6.3, 2007 HI1

At 3:00 a.m., the angle between the arms of the clock = 90°

From 3:00 a.m. to 3:30 a.m., the hour-hand had moved $360^{\circ} \times \frac{1}{12} \times \frac{1}{2} = 15^{\circ}$.

The minute hand had moved 180°.

$$p = 180 - 90 - 15 = 75$$

G7.2 In $\triangle ABC$, $\angle B = \angle C = p^{\circ}$. If $q = \sin A$, find q.

$$\angle B = \angle C = 75^{\circ}, \ \angle A = 180^{\circ} - 75^{\circ} - 75^{\circ} = 30^{\circ}$$

$$q = \sin 30^\circ = \frac{1}{2}$$

G7.3 The 3 points (1, 3), (a, 5), (4, 9) are collinear. Find a.

Reference: 1984 FSG.4, 1986FG6.2, 1987 FG7.4, 1989 HG8

$$\frac{9-5}{4-a} = \frac{9-3}{4-1} = 2$$

$$\Rightarrow a = 2$$

G7.4 The average of 7, 9, x, y, 17 is 10. If m is the average of x + 3, x + 5, y + 2, 8, y + 18, find m.

$$\frac{7+9+x+y+17}{5} = 10$$

$$\Rightarrow x + v = 17$$

$$m = \frac{x+3+x+5+y+2+8+y+18}{5}$$
$$= \frac{2(x+y)+36}{5} = 14$$

$$=\frac{2(x+y)+36}{5}=14$$

Group Event 8

In the addition shown, each letter represents a different digit ranging from

$$S \quad E \quad N \quad D$$

zero to nine. It is already known that

$$S = 9$$
, $O = zero$, $E = 5$.

Find the numbers represented by

(i)
$$M$$
,

(ii)
$$N$$
,

(iii)
$$R$$
, (iv) Y

Consider the thousands digit and the ten thousands digits.

$$0 \le S, M \le 9, 9 + M = 10M + 0 \text{ or } 9 + M + 1 = 10M + 0$$

 \Rightarrow M = 1 and there is no carry digit.

Consider the hundreds digit. 5 + 0 + 1 = N

 \Rightarrow N = 6 and there is a carry digit.

For the tens digit. 6 + R = 10 + 5

$$\Rightarrow$$
 R = 9 (same as S, rejected) or 6 + R + 1 = 10 + 5

$$\Rightarrow R = 8$$

There is a carry digit in the unit digit

$$D + 5 = 10 + Y$$
, $(D, Y) = (7, 2) \Rightarrow Y = 2$

$$M = 1, N = 6, R = 8, Y = 2$$

Group Event 9

G9.1 If $x = \left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{3}\right)\left(1 - \frac{1}{4}\right)\cdots\left(1 - \frac{1}{100}\right)$, find x in the simplest fractional form.

Reference: 1985 FSG.3, 1986 FG10.4

$$x = \frac{1}{2} \times \frac{2}{3} \times \frac{3}{4} \times \dots \times \frac{99}{100} = \frac{1}{100}$$

G9.2 The length, width and height of a rectangular block are 2, 3 and 4 respectively. Its total surface area is A, find A.

Similar Questions: 1984 FI3.2, 1985 FSI.2

$$A = 2 \times (2 \times 3 + 3 \times 4 + 2 \times 4) = 52$$

G9.3 The average of the integers $1, 2, 3, \dots, 1001$ is m. Find m.

$$m = \frac{1}{1001} (1 + 2 + 3 + \dots + 1001)$$
$$= \frac{1}{1001} \cdot \frac{(1 + 1001) \cdot 1001}{2} = 501$$

G9.4 The area of a circle inscribed in an equilateral triangle is 12π . If P is the perimeter of this triangle, find P.

Reference: 1990 FI2.3

Let the radius be r and the centre be O.

$$\pi r^2 = 12\pi$$

$$\Rightarrow r = 2\sqrt{3}$$

The length of one side of the equilateral triangle is $\frac{P}{3}$.

$$\frac{P}{3} = 2r \cot 30^{\circ}$$

$$=2\sqrt{3}r=12$$

$$P = 36$$

Group Event 10

G10.1 If A is the area of a square inscribed in a circle of diameter 10, find A.

Reference: 1985 FSG.4, 1989 FI3.3

Let the square be *BCDE*.

$$BC = 10 \cos 45^{\circ} = 5\sqrt{2}$$

$$A = (5\sqrt{2})^2 = 50$$

G10.2 If
$$a + \frac{1}{a} = 2$$
, and $S = a^3 + \frac{1}{a^3}$, find S.

Reference: 1998 HG1

$$a^{2} + \frac{1}{a^{2}} = \left(a + \frac{1}{a}\right)^{2} - 2 = 4 - 2 = 2$$

$$S = a^{3} + \frac{1}{a^{3}}$$

$$= \left(a + \frac{1}{a}\right)\left(a^{2} - 1 + \frac{1}{a^{2}}\right)$$

$$= 2(2 - 1) = 2$$

G10.3 An *n*-sided convex polygon has 14 diagonals. Find *n*.

Reference: 1985 FG8.3, 1988 FG6.2, 1989 FG6.1, 1991 FI2.3, 2001 FI4.2, 2005 FI1.4

Number of diagonals =
$$C_2^n - n = \frac{n(n-1)}{2} - n = 14$$

$$n^2 - 3n - 28 = 0$$

$$(n-7)(n+4)=0$$

$$\Rightarrow n = 7$$

G10.4 If d is the distance between the 2 points (2, 3) and (-1, 7), find d.

Reference: 1986 FG9.4

$$d = \sqrt{[2 - (-1)]^2 + (3 - 7)^2} = 5$$