94-95	1	1111111	2	$\frac{2}{3}$	3	0, 2	4	$\frac{11}{450}$	5	$-\frac{4}{3}$
Individual	6	5	7	1	8	7	9	$\frac{1}{6}$	10	12

94-95	1	1	2	132	3	$\frac{45}{2}$	4	45	5	24
Group	6	5130	7	$2\sqrt{3}-3$	8	8	9	124	10	$\frac{2}{3}$

Individual Events

II Find the square root of 1234567654321.

Observe the pattern $11^2 = 121$; $111^2 = 12321$, $1111^2 = 1234321$,

 $1234567654321 = 11111111^2$

 $\Rightarrow \sqrt{1234567654821} = 1111111$ (7 digits)

I2 Given that $f\left(\frac{1}{x}\right) = \frac{x}{1-x^2}$, find the value of f(2).

$$f(2) = f\left(\frac{1}{\frac{1}{2}}\right) = \frac{\frac{1}{2}}{1 - \left(\frac{1}{2}\right)^2} = \frac{2}{3}$$

I3 Solve $3^{2x} + 9 = 10(3^x)$.

Let $y = 3^x$, then $y^2 = 3^{2x}$

$$v^2 + 9 = 10v$$

$$v^2 - 10v + 9 = 0$$

$$(y-1)(y-9)=0$$

$$y = 1 \text{ or } y = 9$$

$$3^x = 1 \text{ or } 3^x = 9$$

$$x = 0$$
 or 2

I4 A three-digit number is selected at random. Find the probability that the number selected is a perfect square.

Reference: 1997 FG1.4

The three-digit numbers consists of $\{100, 101, \dots, 999\}$, altogether 900 numbers.

Favourable outcomes = $\{100, 121, \dots, 961\} = \{10^2, 11^2, \dots, 31^2\}, 22$ outcomes

P(perfect squares) = $\frac{22}{900} = \frac{11}{450}$

I5 Given that $\sin x + \cos x = \frac{1}{5}$ and $0 \le x \le \pi$, find $\tan x$.

Reference: 1992 HI20, 1993 G10, 2007 HI7, 2007 FI1.4, 2014 HG3

$$(\sin\alpha + \cos\alpha)^2 = \frac{1}{25}$$

$$\sin^2 \alpha + 2 \sin \alpha \cos \alpha + \cos^2 \alpha = \frac{1}{25}$$

$$1 + 2\sin\alpha\cos\alpha = \frac{1}{25}$$

$$\sin\alpha\cos\alpha = -\frac{12}{25}$$

$$25 \sin \alpha \cos \alpha = -12(\sin^2 \alpha + \cos^2 \alpha)$$

$$12\sin^2\alpha + 25\sin\alpha\cos\alpha + 12\cos^2\alpha = 0$$

$$(3 \sin \alpha + 4 \cos \alpha)(4 \sin \alpha + 3 \cos \alpha) = 0$$

$$\tan \alpha = -\frac{4}{3}$$
 or $-\frac{3}{4}$

Check when
$$\tan \alpha = -\frac{4}{3}$$
, then $\sin \alpha = \frac{4}{5}$, $\cos \alpha = -\frac{3}{5}$

LHS =
$$\sin \alpha + \cos \alpha = \frac{4}{5} + \left(-\frac{3}{5}\right) = \frac{1}{5} = \text{RHS}$$

When
$$\tan \alpha = -\frac{3}{4}$$
, then $\sin \alpha = \frac{3}{5}$, $\cos \alpha = -\frac{4}{5}$

LHS =
$$\sin \alpha + \cos \alpha = \frac{3}{5} - \frac{4}{5} = -\frac{1}{5} \neq RHS$$

$$\therefore B = \tan \alpha = -\frac{4}{3}$$

How many pairs of positive integers x, y are there satisfying xy - 3x - 2y = 10? xy - 3x - 2y + 6 = 10 + 6

$$(x-3)(y-2) = 16$$

x-3	y-2	16	x	У
1	16		4	18
2	8		5	10
4	4		7	6
8	2		11	4
16	1		19	3

- :. There are 5 pairs of positive integers.
- 17 x, y are positive integers and 3x + 5y = 123. Find the least value of |x y|.

$$x = 41$$
, $y = 0$ is a particular solution of the equation.

The general solution is x = 41 - 5t, y = 3t, where t is any integer.

$$|x - y| = |41 - 5t - 3t| = |41 - 8t|$$

The least value is $|41 - 8 \times 5| = 1$.

Find the remainder when 1997⁹¹³ is divided by 10. **I8**

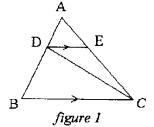
Note that
$$7^1 = 7$$
, $7^2 = 49$, $7^3 = 343$, $7^4 = 2401$.

Also,
$$7^{4n+1} \equiv 7 \pmod{10}$$
, $7^{4n+2} \equiv 9 \pmod{10}$, $7^{4n+3} \equiv 3 \pmod{10}$, $7^{4n} \equiv 1 \pmod{10}$

$$1997^{913} \equiv 7^{913} \pmod{10} \equiv 7^{912+1} \equiv 7^{4(228)+1} \equiv 7 \pmod{10}$$

The remainder is 7.

In figure 1, if BC = 3DE, find the value of r, where $r = \frac{\text{Area of } \Delta ADE}{\text{Area of } \Delta BDC}$. 19



$$\triangle ADE \sim \triangle ABC$$

$$\Rightarrow \frac{\text{Area of } \Delta ADE}{\text{Area of } \Delta ABC} = \left(\frac{1}{3}\right)^2 = \frac{1}{9}$$

$$\frac{\text{Area of } \Delta ADE}{\text{Area of } BCED} = \frac{1}{9-1} = \frac{1}{8} \quad \dots (1)$$

$$AE : AC = DE : BC = 1 : 3$$
 (ratio of sides, $\sim \Delta$)

$$AE:EC=1:2$$

 $\triangle ADE$ and $\triangle CDE$ have the same height with base ratio 1:2

Area of
$$\triangle ADE$$
 = $\frac{AE}{CE} = \frac{1}{2}$ (2)

$$r = \frac{\text{Area of } \Delta ADE}{\text{Area of } \Delta BDC} = \frac{1}{8-2} = \frac{1}{6}$$
 by (1) and (2)

A, B, C, D are points on the sides of the right-angled triangle PQR as shown in figure 2. If ABCD is a square, QA = 8 and BR = 18, find AB.

Let
$$\angle BRC = \theta$$
, then $\angle DQA = 90^{\circ} - \theta$ (\angle s sum of Δ)

$$\angle DAQ = 90^{\circ} (\angle \text{ of a square}), \angle QDA = \theta (\angle \text{s sum of } \Delta)$$

$$BC = BR \tan \theta = 18 \tan \theta = AD$$
 (opp. sides of square)

$$QA = 8 = AD \tan \theta = 18 \tan^2 \theta$$

$$\Rightarrow \tan \theta = \frac{2}{3}$$

$$AB = BC = 18 \tan \theta = 18 \times \frac{2}{3} = 12$$

Method 2

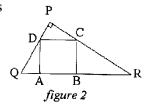
It is easy to show that $\triangle PDC \sim \triangle AQD \sim \triangle BCR$ (equiangular)

Let
$$AB = AD = BC = CD = x$$

$$PD : PC : x = 8 : x : QD = x : 18 : CR \text{ (cor. sides, } \sim \Delta s)$$

$$x^2 = 8 \times 18$$

$$AB = x = 12$$



Group Events

G1 Find the number of positive integral solutions of the equation $x^3 + (x+1)^3 + (x+2)^3 = (x+3)^3$ Expand: $x^3 + x^3 + 3x^2 + 3x + 1 + x^3 + 6x^2 + 12x + 8 = x^3 + 9x^2 + 27x + 27$

$$2x^3 - 12x - 18 = 0$$

$$x^3 - 6x - 9 = 0$$
; let $f(x) = x^3 - 6x - 9$

$$f(3) = 27 - 18 - 9 = 0$$
 : $x - 3$ is a factor.

By division,
$$(x-3)(x^2+3x+3)=0$$

$$x = 3$$
 or $\frac{-3 \pm \sqrt{-3}}{2}$ (rejected)

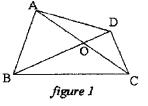
- \therefore There is **one** positive integral solution x = 3.
- **G2** In figure 1, \overrightarrow{ABCD} is a quadrilateral whose diagonals intersect at O.

If
$$\angle AOB = 30^{\circ}$$
, $AC = 24$ and $BD = 22$,

find the area of the quadrilateral ABCD.

The area =
$$\frac{1}{2}24 \times 22 \times \sin 30^\circ$$

= 132



G3 Given that $\frac{1}{n} + \frac{2}{n} + \frac{3}{n} + \dots + \frac{n-1}{n} = \frac{n-1}{2}$,

find the value of
$$\frac{1}{2} + \left(\frac{1}{3} + \frac{2}{3}\right) + \left(\frac{1}{4} + \frac{2}{4} + \frac{3}{4}\right) + \dots + \left(\frac{1}{10} + \dots + \frac{9}{10}\right)$$
.

Reference: 1996 FG9.4, 2004HG1, 2018 HG9

$$\frac{1}{2} + \left(\frac{1}{3} + \frac{2}{3}\right) + \left(\frac{1}{4} + \frac{2}{4} + \frac{3}{4}\right) + \dots + \left(\frac{1}{10} + \dots + \frac{9}{10}\right)$$

$$= \frac{1}{2} + \frac{2}{2} + \frac{3}{2} + \frac{4}{2} + \dots + \frac{9}{2}$$

$$= \frac{2 \quad 2 \quad 2 \quad 2}{2} = \frac{1+2+\dots+9}{2} = \frac{45}{2}$$

G4 Suppose x and y are positive integers such that $x^2 = y^2 + 2000$, find the least value of x.

Reference: 1993 HI7, 1997 HI1

$$x^2 - y^2 = 2000 = 1 \times 2000$$

$$= 2 \times 1000 = 4 \times 500$$

$$= 5 \times 400 = 8 \times 250$$

$$= 10 \times 200 = 16 \times 125$$

$$=20\times100=25\times80$$

$$=40 \times 50$$

$$(x+y)(x-y) = 2000$$

- \therefore x and y are positive integers
- $\therefore x + y$ and x y are also positive integers

- x is the least when y is the largest
- \therefore The difference between x and y is the largest

$$x + y = 50, x - y = 40$$

Solving,
$$x = 45$$

G5 Given that 37^{100} is a 157-digit number, and 37^{15} is an *n*-digit number. Find *n*.

Reference: 2003 FI2.1

Let
$$y = 37^{100}$$
, then $\log y = \log 37^{100} = 156 + a$, where $0 \le a < 1$

$$100 \log 37 = 156 + a$$

$$15 \log 37 = \frac{15}{100} (156 + a)$$

$$\log 37^{15} = 23.4 + 0.15a$$

$$23 < \log 37^{15} < 24$$

$$n = 24$$
.

G6 Given that $1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n}{6}(n+1)(2n+1)$,

find the value of
$$19 \times 21 + 18 \times 22 + 17 \times 23 + ... + 1 \times 39$$
.

$$19 \times 21 + 18 \times 22 + 17 \times 23 + ... + 1 \times 39$$

$$= (20-1)(20+1) + (20-2)(20+2) + (20-3)(20+3) + ... + (20-19)(20+19)$$

$$= (20^2 - 1^2) + (20^2 - 2^2) + (20^2 - 3^2) + \dots + (20^2 - 19^2)$$

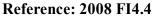
$$=20^2 + \cdots + 20^2$$
 (19 times) $-(1^2 + 2^2 + 3^2 + \cdots + 19^2)$

$$= 19 \times 400 - \frac{19}{6} (20)(39)$$

$$=7600-2470$$

$$=5130$$

G7 In figure 2, ABCD is a square where AB = 1 and CPQ is an equilateral triangle. Find the area of ΔCPQ .



Let
$$AQ = AP = x$$
.

Then
$$BQ = DP = (1 - x)$$

By Pythagoras' Theorem,

$$CP = CQ \Rightarrow 1 + (1 - x)^2 = x^2 + x^2$$

$$2 - 2x + x^2 = 2x^2$$

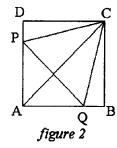
$$x^2 + 2x - 2 = 0 \Rightarrow x^2 = 2 - 2x$$

$$x = -1 + \sqrt{3}$$

Area of $\triangle CPQ$ = Area of square – area of $\triangle APQ$ – 2 area of $\triangle CDP$

$$= 1 - \frac{x^2}{2} - 2 \times \frac{1 \times (1 - x)}{2} = x - \frac{x^2}{2} = x - \frac{2 - 2x}{2} = 2x - 1$$
$$= 2(-1 + \sqrt{3}) - 1 = 2\sqrt{3} - 3$$

Method 2 Area of
$$\triangle CPQ = \frac{1}{2}PQ^2 \sin 60^\circ = \frac{1}{2}(x^2 + x^2) \cdot \frac{\sqrt{3}}{2}$$
$$= \frac{\sqrt{3}x^2}{2} = \frac{\sqrt{3}(1 + 3 - 2\sqrt{3})}{2} = (2\sqrt{3} - 3)$$



G8 The number of ways to pay a sum of \$17 by using \$1 coins, \$2 coins and \$5 coins is n. Find n. (Assume that all types of coins must be used each time.)

Suppose we used x + 1 \$1 coins, y + 1 \$2 coins, z + 1 \$5 coins, where x, y, z are non-negative integers. Then (x + 1) + 2(y + 1) + 5(z + 1) = 17

$$x + 2y + 5z = 9$$

$$(x, y, z) = (9, 0, 0), (7, 1, 0), (5, 2, 0), (3, 3, 0), (1, 4, 0), (4, 0, 1), (2, 1, 1), (0, 2, 1).$$

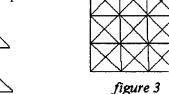
Altogether 8 ways.

G9 In figure 3, find the total number of triangles in the 3×3 square.

Reference: 1998 HG9

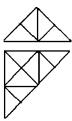
There are 36 smallest triangles with length = 1

There are 36 triangles with length = $\sqrt{2}$

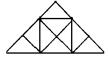


There are 24 triangles with length = 2

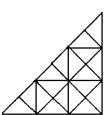
There are 16 triangles with length = $2\sqrt{2}$



There are 8 triangles with length = 3



There are 4 triangles with length = $3\sqrt{2}$ Altogether 124 triangles.



G10 In figure 4, the radius of the quadrant and the diameter of the large semi-circle is 2. Find the radius of the small semi-circle.

Let the radius of the smaller semi-circle be r cm.

Let A, D, E be the centres of the quadrant, the larger and the smaller semi-circles respectively.

$$\angle BAC = 90^{\circ}$$

DE intersects the two semicircles at F.

$$AE = EC = 1$$
 cm

$$BD = DF = r \text{ cm}$$

$$AC = AB = 2$$
 cm

$$AD = (2 - r)$$
 cm, $DE = (1 + r)$ cm

$$AD^2 + AE^2 = DE^2$$
 (Pythagoras' theorem)

$$1^2 + (2 - r)^2 = (1 + r)^2$$

$$1 + 4 - 4r + r^2 = 1 + 2r + r^2$$

$$\Rightarrow r = \frac{2}{3}$$

